

Tech Support

1-719-234-7952

Resources

- Resource tab includes
 - Speaker bios
 - Copy of the slide presentation
 - Exhibit Hall

Submit your questions throughout the program!

MMRF Research Initiatives MULTIPLE MYELOMA Research Consortium Communication Communi

For more information, please visit themmrf.org

_

Speakers

Larry D. Anderson, Jr., MD, PhD
UT Southwestern Medical Center
Simmons Comprehensive Cancer Center
Dallas, Texas

Faith E. Davies, MBBCh, MD
Perlmutter Cancer Center
New York University/Langone Health
New York, New York

Treatment Options and Considerations for Multiple Myeloma Patients at Relapse

Faith E. Davies, MBBCh, MD

Perlmutter Cancer Center

New York University/Langone Health

New York, New York

7

Multiple Myeloma Is a Marathon, **Not a Sprint** Asymptomatic **Symptomatic** Relapsing Refractory 100 Induction 2nd RELAPSE protein (g/L) remission \pm SCT REFRACTORY RELAPSE 1st RELAPSE 50 MGUS or smoldering myeloma 20

Plateau remission

First-line therapy

Second line

Third line

Adapted from Borrello I. Leuk Res. 2012;36 Suppl. 1:S3.

Definitions: What is relapsed/refractory disease and a line of therapy?

- Relapsed: recurrence (reappearance of disease) after a response to therapy
- Refractory: progression despite ongoing therapy
- Progression: change in M protein/light chain values
- Line of therapy: change in treatment due to either progression of disease or unmanageable side effects
 - Note: initial (or induction) therapy + stem cell transplant + consolidation/maintenance therapy = 1 line of therapy

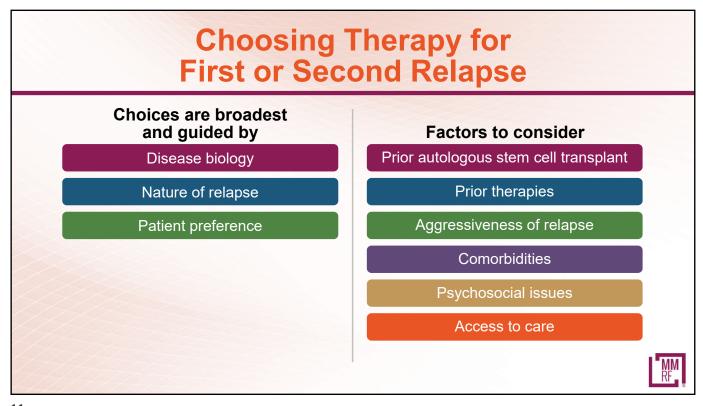
9

Biochemical Relapse or Clinical Relapse

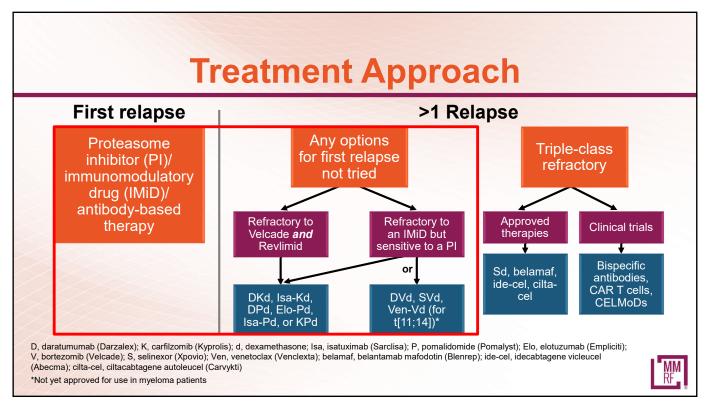
Biochemical

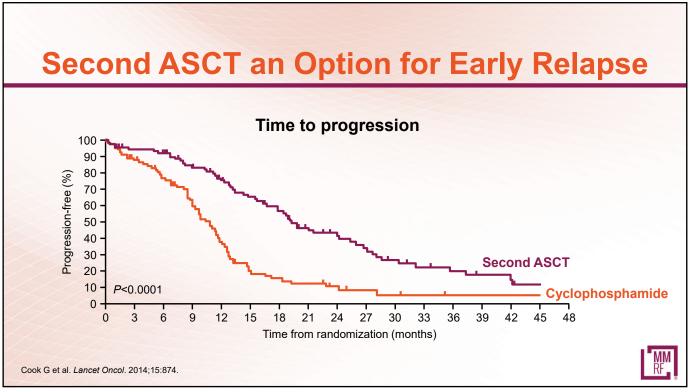
 Patients with asymptomatic rise in blood or urine M protein, free light chains, or plasma cells

Timing of therapy initiation/escalation dependent on numerous factors


Clinical

 Based on direct indicators of increasing disease and/or end-organ dysfunction




Mandates immediate initiation/escalation of therapy

Options for Relapsed/Refractory Disease Continue to Increase Proteasome Chemotherapy Chemotherapy Cellular of action **IMiDs** inhibitors anthracyclines alkylators **Steroids** mAbs therapy Abecma **XPOVIO** Thalomid Velcade Cytoxan **Empliciti** Adriamycin (idecabtagene Dexamethasone (thalidomide) (bortezomib) (cyclophosphamide) (selinexor) (elotuzumab) vicleucel) Doxil Carvykti Revlimid **Kyprolis** Venclexta Darzalex (liposomal Bendamustine Prednisone (ciltacabtagene (carfilzomib) (lenalidomide) (venetoclax)* (daratumumab) doxorubicin) autoleucel) Pomalyst Ninlaro Farydak Sarclisa Melphalan (pomalidomide) (ixazomib) (Panobinostat)¹ (isatuximab) Blenrep Pepaxto (belantamab (melflufen)† mafodotin)‡ *Not yet FDA-approved for patients with multiple myeloma; †Withdrawn from the US market in 2021; †Antibody-drug conjugate New formulations, new dosing, and new combinations, too!

Proteasome Inhibitor-Based Regimens for Early Relapse

OPTIMISMM ASPIRE TOURMALINE-MM1 BOSTON Regimens Velcade-Pomalyst-· Kyprolis-Revlimid-dex · Ninlaro-Rd (IRd) vs XPOVIO-Velcade-dex Compared dex (VPd) vs Vd (KRd) vs Rd (XPO-Vd) vs Vd Median progression-• XPO-Vd: 14 vs · VPd: 11 vs 7 months KRd: 26 vs 17 months • IRd: 21 vs 15 months free survival 9 months favored:

Important Considerations for Use of **Proteasome Inhibitors**

Velcade

- · Risk of peripheral neuropathy (PN; numbness, tingling, burning sensations and/or pain due to nerve damage)
- Avoid in patients with severe existing PN
- Reduced with subcutaneous once-weekly dosing
- · High risk of shingles
- Use appropriate vaccination
- · No dose adjustment for kidney issues; but adjust for liver issues

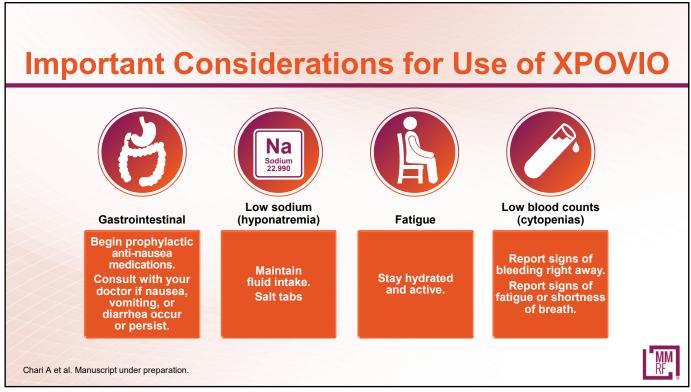
Kyprolis

- · Less PN than Velcade
- High risk of shingles
- Use appropriate vaccination
- Monitor for heart, lung, and kidney side effects
- Use with caution in older patients with cardiovascular risk factors
- High blood pressure
- · No dose adjustment for kidney issues; but adjust for liver issues

Ninlaro

- · Less PN than Velcade
- High risk of shingles
 - Use appropriate vaccination
- · Monitor for rashes and gastrointestinal (GI) side effects
 - GI effects occur early
- · Needs to be taken at least 1 hour before or 2 hours after a meal

*Do not take any supplements without consulting with your doctor.



15

Important Considerations for Use of **Immunomodulatory Drugs** Revlimid* Pomalyst* Low blood counts Rash Consider antihistamines Less rash than Revlimid Diarrhea Risk of second primary Consider bile acid sequestrants malignancies · Risk of blood clots Risk of blood clots · Risk of second primary malignancies · Dose adjustment based on kidney function Once-a-day pill Once-a-day pill

17

*Black box warning.

Proteasome Inhibitor-Based Regimens for Early Relapse **OPTIMISMM ASPIRE** TOURMALINE-MM1 BOSTON Regimens · Velcade-Pomalyst-

Median progression-free survival favored

compared

dex (VPd) vs Vd

- · Kyprolis-Revlimiddex (KRd) vs Rd
- · Ninlaro-Rd (IRd) vs
- · XPOVIO-Velcadedex (XPO-Vd) vs Vd

- · VPd: 11 vs 7 months
- KRd: 26 vs 17 months
- IRd: 21 vs 15 months
- XPO-Vd: 14 vs 9 months

Clinical considerations

- Consider for relapse on Revlimid
- VPd associated with more low blood counts, infections, and neuropathy than Pd
- · KRd associated with more upper respiratory infections and high blood pressure than Rd
- · IRd an oral regimen
- Gastrointestinal toxicities and rashes
- Lower incidence of peripheral neuropathy
- XPO-Vd associated with low platelet counts and fatigue with triplet, but less neuropathy than the Vd

19

Monoclonal Antibody-Based Regimens at Relapse

Larry D. Anderson, Jr., MD, PhD **UT Southwestern Medical Center** Simmons Comprehensive Cancer Center Dallas, Texas

Monoclonal Antibody–Based Regimens for Early Relapse: Darzalex POLLUX CASTOR CANDOR APOLLO

		POLLUX	CASTOR	CANDOR	APOLLO
	Regimens compared	Darzalex-Revlimid- dex (DRd) vs Rd	Darzalex-Velcade- dex (DVd) vs Vd	Darzalex-Kyprolis- dex (DKd) vs Kd	Darzalex-Pomalyst- dex (DPd) vs Pd
XXXX	Median progression- free survival favored	DRd: Not reached vs 17 months	• DVd: 17 vs 7 months	DKd: Not reached vs 16 months	• DPd: 12 vs 7 months

21

Important Considerations for Use of Darzalex

Darzalex

- · Infusion reactions
 - Less with SC use
- Risk of shingles
 - Use appropriate vaccination

DRd associated with

infections, low blood

and diarrhea

more upper respiratory

white blood cell counts.

Monoclonal Antibody-Based Regimens for Early Relapse: Darzalex **POLLUX** CASTOR CANDOR **APOLLO** Darzalex-Velcade-· Darzalex-Revlimid-· Darzalex-Kyprolis-· Darzalex-Pomalyst-Regimens dex (DPd) vs Pd compared dex (DRd) vs Rd dex (DVd) vs Vd dex (DKd) vs Kd Median progression-· DRd: Not reached vs · DKd: Not reached vs · DVd: 17 vs 7 months • DPd: 12 vs 7 months free survival 17 months 16 months favored · Consider for younger, fit Consider for relapses Consider in patients who patients who are double- Consider for patients who from Revlimid or Velcade are double-refractory to refractory to Revlimid and are Revlimid-refractory maintenance Revlimid and a Velcade Clinical

· DKd associated with more

Sever side effects (possibly

respiratory infections

fatal) in intermediate fit

patients 65 and older

proteasome inhibitor

Severe low white blood

MM RF

. (Velcade, Kyprolis,

Ninlaro)

cell counts

without significant

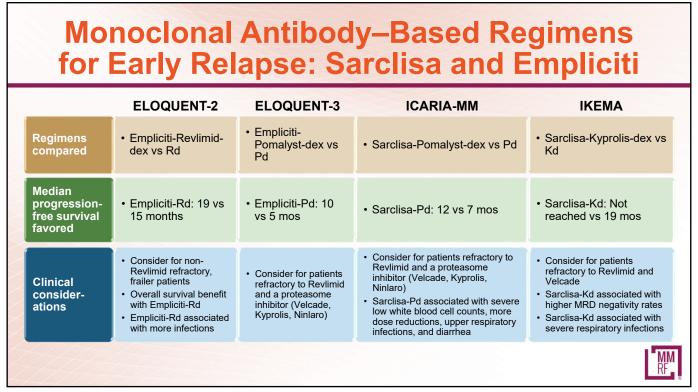
DVd associated with

more low blood cell

neuropathy

counts

23


consider-

ations

Monoclonal Antibody-Based Regimens for Early Relapse: Sarclisa and Empliciti **ELOQUENT-2 ELOQUENT-3 ICARIA-MM IKEMA** Empliciti-Revlimid-Empliciti-Pomalyst-· Sarclisa-Pomalvst-Regimens Sarclisa-Kyprolis-dex compared dex vs Rd dex vs Pd dex vs Pd vs Kd Median progression-· Empliciti-Rd: 19 vs • Empliciti-Pd: 10 vs 5 Sarclisa-Pd: 12 vs 7 · Sarclisa-Kd: Not free survival 15 months reached vs 19 mos mos mos favored:

Important Considerations for Use of **Monoclonal Antibodies** Sarclisa **Empliciti** Infusion reactions Lower rate of infusion reactions than Darzalex or · Risk of shingles Sarclisa Use appropriate Risk of shingles vaccination Use appropriate vaccination IV infusion IV infusion

25

Current and Emerging Therapies for Relapsed/Refractory Multiple Myeloma

Current therapies

Antibody-drug conjugates

- Blenrep
- · Targets BCMA
- A monoclonal antibody conjugated by a proteaseresistant linked to a microtubule-disrupting agent

Chimeric antigen receptor (CAR) T cells

- Abecma and Carvykti
- Targets BCMA
- Genetically modified autologous T cells that attack myeloma cells

Emerging therapies

Bispecific antibodies

- · Teclistamab, elranatamab, and others
- · Targets BCMA on myeloma cells and CD3 on T cells
- · Redirects T cells to myeloma cells

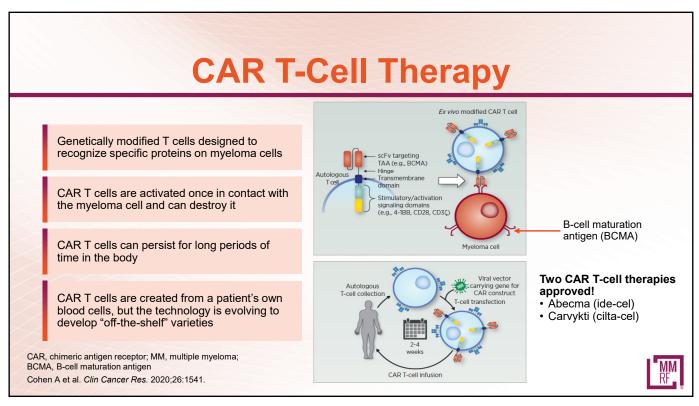
Cerebion E3 ligase modulators (CELMoDs)

- Iberdomide
- · Targets cereblon
- Enhances tumoricidal and immune-stimulatory effects compared with immunomodulatory agents

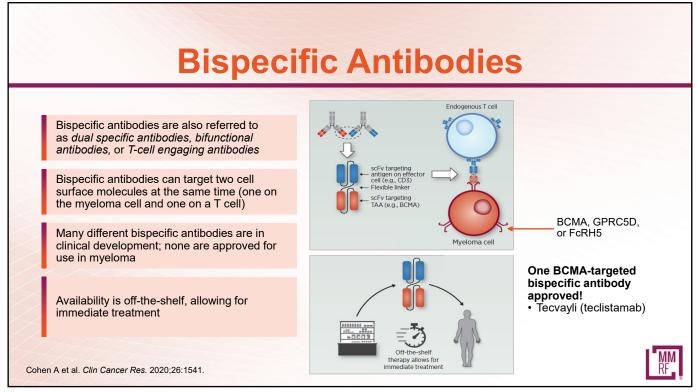
Small molecule inhibitors

- Venetoclax
- Targets Bcl-2
- · Induces multiple myeloma cell apoptosis

27


Summary

- We now have many different options for relapsed myeloma depending on patient and myeloma factors at relapse.
- Therapy choices will depend on teamwork between physician and patient and caregivers and are based on multiple decision points.
- Combinations of proteasome inhibitors with either immunomodulatory drugs or selinexor improve progression-free survival.
- We have three different monoclonal antibodies that improve progression-free survival when added to other standard therapies without significantly increasing side effects.
- In general, three-drug combinations are going to work better than two drugs.
- Many other exciting immunotherapy options are in trials and look very promising.


Sarclisa After Early or Late Relapse **IKEMA Study** Late relapse Early relapse Patients with relapsed/refractory myeloma Sarclisa Sarclisawho received 1-3 prior therapies, had no -Kd Kd Kd Kd prior therapy with Kyprolis, and were not Median PFS (months) 24.7 17.2 42.7 21.9 refractory to prior anti-CD38 antibody Overall response rate (%) 82 82.6 90.4 86.1 ≥VGPR rate (%) 67.2 52.2 76 58.3 123 patients 179 patients MRD negativity rate (%) 24.6 15.2 37.5 16.7 MRD-negative CR rate (%) 13.9 Sarclisa-Kd Kd Regardless of early or late relapse, RRMM Data evaluated according to patients who patients benefit from the use of isa-Kd with respect to depth of response and prolonged PFS. experienced an early* versus late† relapse. *<12 months from initiation of most recent line of therapy (for patients who had ≥2 lines of therapy); <18 months (for patients who had 1 prior line of therapy) and <12 months from ASCT t≥12 months from initiation of most recent line of therapy (for patients who had ≥2 lines of therapy; ≥18 months for patients who had 1 prior line of therapy) Facon T et al. Blood. 2022;140. Abstract 753.

CAR T-Cell Therapy Insights Real-world outcome Prognostic value of depth **Outcomes and options** of response following with Abecma after BCMAfollowing relapse from CAR T³ Assessment of cytopenias from CAR T⁴ **CAR T-cell therapy** targeted therapy² Achieving sustained, undetectable 11 US academic centers conducted A retrospective analysis of 78 Retrospective review of data from MRD after Abecma is associated a retrospective analysis on the real-world outcome for patients treated patients with RRMM who received BCMA-targeted CAR T-cell 90 patients 4 months after CAR Twith prolonged PFS cell infusion with Abecma after previously therapy Patients with poor hematologic recovery (28%) compared with adequate recovery (72%) were Only MRD status—not complete receiving BCMA-targeted therapy response (CR) status—predicted early relapse 1 month after Abecma Patients who had previously been Prior BCMA-targeted treatment is refractory to a specific drug class associated with inferior PFS and a re-responded after CAR-T relapse older, more heavily pretreated, and Both MRD and CR status at 12 trend toward inferior outcomes for more likely to have received ≥1 Median OS after progressing on CAR T was 14.8 months and 18 months were required to identify patients with longer PFS patients receiving Abecma within 6 months of having received prior BCMA-targeted therapy months for patients who received subsequent BCMA CAR T or Abecma in earlier lines Warrants further investigation into of treatment⁵ BCMA bispecific antibodies within the optimal timing of Abecma infusion 6 months of progressing on CAR T KarMMa-2 phase 2 multicenter study of Abecma in 37 patients with RRMM with high-risk disease* Results show a benefit to Abecma in earlier line of treatment *Early relapse after frontline therapy or inadequate response after frontline ASCT 1. Paiva B et al. Blood. 2022;140. Abstract 868. 2. Ferreri CJ et al. Blood. 2022;140. Abstract 766. 3. Reyes KR et al. Blood. 2022;140. Abstract 250. 4. Thibaud S et al. Blood. 2022;140. Abstract 249. 5. Usmani S et al. Blood. 2022;140. Abstract 361.

What's next for CAR T-cell therapy? BMS-986354[1] FasT CAR-T GC012F² BMS-986393[3] Targets BCMA and CD19 · Targets BCMA with a shortened **Features** manufacturing time through the Manufacturing process that Targets GPRC5D **NEXT-T process** takes as little as 24 hours Phase 1 trial of 13 newly Phase 1 trial of 17 heavily Phase 1 trial of 55 patients with pretreated patients with RRMM. diagnosed high-risk myeloma RRMM with a median of 5 prior details patients ineligible for stem cell including those who relapsed lines of therapy from BCMA CAR-T therapy CRS occurred in 80% of patients · Neutropenia and thrombocytopenia most frequent grade 3/4 adverse with only 1 patient experiencing 100% of patients achieved events ≥VGPR (69% sCR) ≥G3 · Additional adverse events include · All patients achieved MRD Neurotoxicity occurred in 10.9% skin- and nail-related; CRS; ICANS; Results of patients (one grade 4) negativity (by EuroFlow) dysgeusia/dysphagia Overall response rate was 98.1% · CRS observed in 23% of 86% evaluable patients responded, with 57.4% achieving ≥VGPR patients (all low grade) including 7 of 11 patients treated with (29.6% ≥CR) prior BMCA-targeted treatment MM RF

33

1. Costa LJM et al. Blood, 2022;140. Abstract 566, 2. Du J et al. Blood, 2022;140. Abstract 366, 3. Bal S et al. Blood, 2022;140. Abstract 364.

Bispecifics Discussed at ASH in 2022

BCMA

- Highly expressed only on the surface of plasma cells
- Myeloma patients have significantly higher serum BCMA levels than healthy individuals

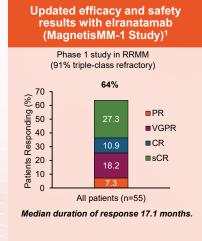
GPRC5D

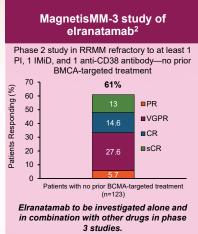
- Highly expressed on myeloma cells in the bone marrow
- Lowly expressed on hair follicles, but not on other healthy cells
- Expression on myeloma cells is independent of BCMA

FcRH5

Selectively expressed on B cells and plasma cells

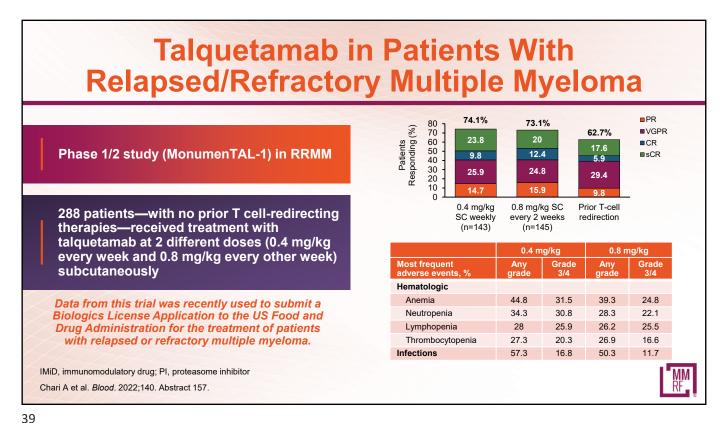
CD3: a T-cell receptor


GPRC5D, G protein-coupled receptor family C group 5 member D


Bispecific antibody	Target (on MM cell × T cell)
Tecvayli (teclistamab)	BCMA × CD3
Elranatamab	BCMA × CD3
Linvoseltamab	BCMA × CD3
Alnuctamab	BCMA × CD3
ABBV-383	BCMA × CD3
Talquetamab	GPRC5D × CD3
Forimtamig (RG6234)	GPRC5D × CD3
Cevostamab	FcRH5 × CD3

35

Elranatamab in Patients With Relapsed/Refractory Multiple Myeloma


IMiD, immunomodulatory drug; PI, proteasome inhibitor 1. Raje N et al. Blood. 2022;140. Abstract 158. 2. Bahlis NJ et al. Blood. 2022;140. Abstract 159.

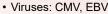
Phase 1 Study of Alnuctamab in Patients With Relapsed/Refractory Multiple Myeloma Intravenous Formulation Results **Subcutaneous Formulation Results** IV alnuctamab (n=70)80 Responding (%) ■VGPR 60 Median follow up (months) 8.0 41% 19 ■sCR 40 Overall response rate (%) 39 27 20 Median duration of response (months) 33.6 Responses ongoing (%) 48 <30 mg (n=29) Target Dose All doses 30 mg (n=26) (n=55)Median PFS (months) Most frequent adverse events, % Any grade All patients 3 1 36 4 Responders Anemia 38 25 Nonresponders 1.7 37 32 Neutropenia Thrombocytopenia 24 9 Non-hematologic CRS 53 0 Infections 34 q **ICANS** 3 0 ALT increase 12

Tecvayli in Combination With Darzalex and Revlimid 93.5% 100 25.8 80 PR Patients Responding (Phase 1b study (MajesTEC-2) in RRMM with 60 ■VGPR 29 ■CR 1-3 prior lines of therapy (including an IMiD 40 ■sCR and a PI) 20 35.5 All patients (n=32) Most frequent non-hematologic Grade 32 patients—who had received at least 2 prior lines of therapy—received treatment CRS 813 0 with the triplet and Tecvayli at 2 different Fatigue 46.9 6.3 doses (0.72 mg/kg and 1.5 mg/kg) Infections (≥1) 90.6 37.5 subcutaneously COVID-19 37.5 12.5 Upper respiratory 31.3 0 Pneumonia 15.6 COVID pneumonia 3.1 9.4 IMiD, immunomodulatory drug; PI, proteasome inhibitor Pneumonia pseudomonal 6.3 6.3 1. Searl E et al. Blood. 2022;140. Abstract 160. CMV 6.3 6.3

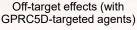
37

Wong SW et al. Blood. 2022;140. Abstract 162.

-



Expected Toxicities With T-Cell Activating Therapies (CAR T and Bispecific Antibodies)



Infections

- PCP/PJP
- Ongoing discussions regarding prophylactic measures
 - IVIG
 - Anti-infectives

- Cytokeratin changes/rash
- Dysgeusia

Cytokine release syndrome (CRS)

 Usually occurs within first 1–2 weeks
 Frequency (all grade and

 Frequency (all grade and grade 3–5) higher with CAR T

(ICANS)

ICANS, immune effector cell-associated neurotoxicity syndrome; CMV, cytomegalovirus; EBV, Epstein-Barr virus; PCP/PJP, pneumocystis pneumonia/pneumocystis jiroveci pneumonia

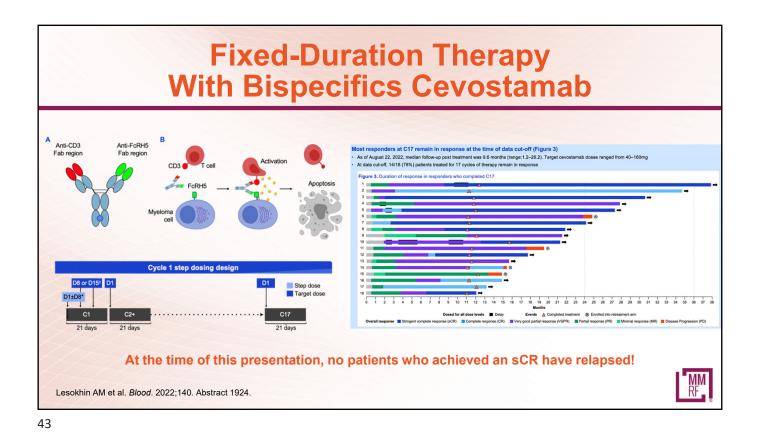
41

Pretreatment With Tocilizumab Reduces Incidence and Severity of CRS

Cevostamab is an FcRH5-targeted bispecific antibody under investigation in patients with RRMM

An ongoing phase 1 study evaluating the use of tocilizumab (an IL-6 antibody) prior to the first dose of cevostamab. A single 8 mg/kg dose of tocilizumab was administered to 28 patients 2 hours prior to cevostamab

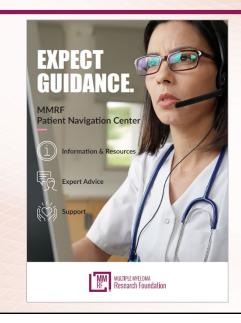
35.7% of patients receiving tocilizumab experienced CRS compared to 90.9% of patients who didn't receive tocilizumab.


Grade 3 CRS was observed in only one patient in each group and no G4/5.

The frequency of neutropenia was higher for patients receiving tocilizumab compared with those who didn't (64.3% vs 38.6% G3/4).

No impact on response was observed with tocilizumab pretreatment.

Trudel S et al. Blood. 2022;140. Abstract 567.



Mezigdomide: A Cereblon E3 Ligase **Modulator (CELMoD)** CELMoDs are related to the immunomodulatory drugs (IMiDs) but are more potent and may overcome resistance to IMiDs ORR 40.6% ORR 30% **ORR 50%** ■ NF A phase 1/2 study of mezigdomide ■PD 100 ■SD combined with dex in ■MR 80 8 relapsed/refractory patients ■ PR 7.5 15.8 ■VGPR 60 5.8 16.7 3.3 ■sCR 52.2 40 101 patients who had received at 38.6 least 6 prior lines of therapy (all 20 10 9.9 were triple-class refractory; one 10 0 Patients with plasmacytomas (n=40) Patients with prior anti-BCMA therapy (n=30) third were previously exposed to anti-BCMA therapy) received treatment with mezigdomide-dex 21.8 5.9 Neutropenia 53.5 Infections Anemia 34 7 10 Pneumonia 129 3.0 Thrombocytopenia 13.9 COVID-19 13.9 0 Richardson PG et al. Blood. 2022;140. Abstract 568.

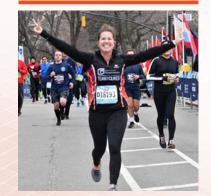
MMRF Patient Resources

47

Myeloma Mentors® allows patients and caregivers the opportunity to connect with trained mentors. This is a phone-based program offering an opportunity for a patient and/or caregiver to connect one-on-one with a trained patient and/or caregiver mentor to share his or her patient journeys and experiences.

No matter what your disease state—smoldering, newly diagnosed, or relapsed/refractory—our mentors have insights and information that can be beneficial to both patients and their caregivers.

Contact the Patient Navigation Center at 888-841-6673 to be connected to a Myeloma Mentor or to learn more.


MMRF Events

Our events are returning live and in-person, and there are so many ways to get involved.

Most have a virtual option, too.

Join us today!

Endurance Events

5K Walk/Run Events

Independent Events

FIND AN EVENT AND JOIN US: themmrf.org/get-involved/mmrf-events/

49

Upcoming Patient Education Events

Save the Date

Topic	Date and Time (ET)	Speakers
Patient Summit Hackensack, NJ	Saturday, March 11 9:00 AM to 1:40 PM ET	David Vesole, MD, PhD Noa Biran, MD Kimberley Doucette, MD Ann McNeill, RN, MSN, APN Susan Kumka, APN
Facebook Live FAQs	Tuesday, March 14 3:00 to 4:00 PM ET	Gurbakhash Kaur, MD Sonia Patel, MPH, MSN, AGACNP-BC, APRN, AOCNP
Webinar: BCMA-Targeted Bispecific Antibodies in Multiple Myeloma	Tuesday, March 21 4:00 to 5:00 PM ET	Jesus Berdeja, MD Amrita Krishnan, MD
Patient Summit Scottsdale, AZ In collaboration with Arizona Myeloma Network	Saturday, March 25 9:00 AM to 3:45 PM MT	Leif Bergsagel, MD Clarence Adoo, MD Jonathan Keats, PhD Sumit Madan, MD Suzanne Hyde, MSW, LCSW Barbara Kavanagh, MSW, LCSW Joan Koerber-Walker William Brown
Webinar (rebroadcast): Multiple Myeloma Precursor Conditions	Wednesday, April 5 2:30 to 3:30 PM ET	Sagar Lonial, MD Omar Nadeem, MD

For more information or to register, visit themmrf.org/resources/education-program

52