

Disclosures

Dr. Lentzsch has disclosed the following relevant financial relationships: *Consultant/Advisor:* Takeda, GSK, Regeneron *Data Safety Monitoring Board:* Janssen, BMS, Adaptive *Research Grant:* Sanofi, Zentalis *Patent and Royalties:* CAEL-101

Mar 2021 Ide-cel

FDA NEWS RELEASE

FDA Approves First Cell-Based Gene Therapy for Adult Patients with Multiple Myeloma

f Share 🔰 Tweet in Linkedin 🐸 Email 🖨 Print

Feb 2022 Cilta-cel

FDA NEWS RELEASE

FDA Approves ciltacabtagene autoleucel for relapsed or refractory multiple myeloma

f Share 💆 Tweet in Linkedin 🖾 Email 🖨 Print

These are the first regulatory approved CAR Ts that are not targeting CD19.

KarMMa-1 Study (Ide-cel)

	CAR+ T cells			
Response	150 × 10 ⁶ (n=4)	300 × 10 ⁶ (n=70)*	450 × 10 ⁶ (n=54)*	Ide-cel treated (n=128)
Overall response rate (%)	50	69	82	73
Complete response rate (%)	25	29	39	33
CR/sCR and MRD- negative	25	24	28	26
CR/sCR and MRD not evaluable	0	4	11	7
VGPR	25	14	26	20
PR	0	26	17	21
*Regulatory agency–approved dose				

CAR+ T cells	mos (95% Cl
50 × 10 ⁶	2.8 (1.0-NE)

PFS by Target Dose

Modian PES

300 × 10 ⁶	5.8 (4.2-8.9)
450 × 10 ⁶	12.1 (8.8–12.3)
Ide-cel treated	8.8 (5.6–11.6)

- PFS increased with higher target dose and depth of response
- Median PFS was 12 mos at 450 × 10⁶ CAR+ T cells
- Median PFS was 20 mos in patients with CR/sCR

		•	
2			
	1		

Munshi NC et al. N Engl J Med. 2021;384:705.

9

Martin T et al. J Clin Oncol. 2022 Jun 4; JCO2200842.

BCMA CAR T Pivotal Trials: Toxicities

	Ide-Cel: Phase 2 (KarMMA-1) ¹ N=128	Cilta-Cel: Phase 1b/ll (CARTITUDE-1) ^{2,3} N=97
CRS, any Gr/≥ Gr 3	84%/5%	95%/4%
Onset day median (range)	1 (1–12)	7 (1–12)
Duration, days median (range)	5 (1–63)	4 (1–97)
ICANS, any Gr/≥ Gr 3	18%/3%	22%/11%*
Drug use	Toci: 52% Steroid: 15%	Toci: 69% Steroid: 22% Anakinra: 19%

*Delayed-onset movement and neurocognitive symptoms noted in 12%, 8% Gr3 or higher.

1. Munshi NC et al. N Engl J Med. 2021;384:705. 2. Reprinted from The Lancet 398(10297), Berdeja JG, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study, P314-P324. Copyright 2021, with permission from Elsevier. 3. Martin T et al. J Clin Oncol. 2022 Jun 4;JCO2200842.

CAR T Access Remains an Issue

		Median (range)
the state	Annual CAR T infusions (all diseases, on/off trial) pre-/during COVID	50–100 (<50, 100–300)
	CAR T infusion volume for MM in 2021	10–50 (<5, 50–100)
	Patients on wait list (since ide-cel approval)	20 (5–100)
-	Number of FDA approved CAR T slots given per month	1 (0–4)
	Duration a patient is on waiting list	6 (3–8) months
	Outcomes of patients on wait list FDA approved CAR-T	25% (0%-64%)
centers. 15 centers.	non-CAR-T trial hospice or death	25% (0%–50%) 25% (0%–50%) 25% (25%–75%)

Kourelis T et al. Ethical challenges with CAR T slot allocation with idecabtagene vicleucel manufacturing access. J Clin Oncol. 40(16);suppl (June 01, 2022):e20021-e20021. © 2022 by American Society of Clinical Oncology. https://ascopubs.org/doi/pdf/10.1200/JCO.2022.40.16_suppl.e20021?role=tab

Survey of 20 Responses from

Conclusions

- 2 FDA-approved CAR T-cell options: ide-cel and cilta-cel
- Ida-cel and cilta-cel have a similar safety profile
 - CRS: ide-cel 85% and cilta-cel 95%
 - ICANs: ide-cel 18% and cilta-cel 22%
- ORR
 - Ide-cel @450 × 10⁶ CAR T cells \rightarrow ORR 82.5%, CR 39%
 - Cilta-cel \rightarrow ORR 92.7% and CR 82.5%
- 12 months median PFS seems to be longer with cilta-cel:
 - Ide-cel 12 mos at 450 × 10^6 CAR+ T cells
 - Cilta-cel median PFS not reached \rightarrow 27 months PFS 54.9%
- ? CAR T cells up front to replace ASCT?

15

Bispecific Antibodies for Multiple Myeloma: Clinical Safety and Efficacy

Amrita Y. Krishnan, MD, FACP

Executive Medical Director, Hematology, City of Hope Orange County Director, Judy and Bernard Briskin Center for Multiple Myeloma Research Professor, Department of Hematology & Hematopoietic Cell Transplantation City of Hope Medical Center Duarte, California

Dr. Krishnan has disclosed the following relevant financial relationships:

Consultant/Advisor: Adaptive Biotechnologies, Artiva, AstraZeneca, Bristol Myers Squibb, GlaxoSmithKline, Janssen, Pfizer, Regeneron, Sanofi, Sutro BioPharma

Research Grant: Janssen

Speakers Bureau: Amgen, Bristol Myers Squibb, GlaxoSmithKline, Takeda

Stock Ownership: Bristol Myers Squibb

Bispecific Antibodies Clinical Trials in Multiple Myeloma

- AMG420 (BCMA×CD3)
- Pavurutamab (AMG701; BCMA × CD3)
- Alnuctamab (CC93269; BCMA × CD3)
- Elranatamab (PF06863135; BCMA × CD3)
- Linvoseltamab (RGN5458; BCMA × CD3)
- Teclistamab (JNJ64007957; BCMA × CD3)
- TNB-383B (BCMA × CD3)
- Talquetamab (JNJ64407564; GPRC5D × CD3)
- Cevostamab (BFCR4350A; FCRH5 × CD3)
- GBR1342 (CD38 × CD3)
- AMG424 (CD38 × CD3)

Lancman G et al. Hematology Am Soc Hematol Educ Program. 2020:264.

BCMA (B-Cell Maturation Antigen)

- Receptor for BAFF and APRIL
- Expressed on mature B-cell subsets, PCs, and plasmacytoid DCs
- Maintains plasma cell homeostasis
- BCMA-/- mice have normal B cell #s, impaired PC survival

MajesTEC-1: Patient Demographics and Baseline Characteristics

- N=165
- Median age, 64 years (33–84)
- Median prior lines of therapy, 5.0 (2–14)
- Exposure status
 - Triple-class exposed, 100%
 - Penta-drug exposed, 70.3%
- Refractory status
 - Triple-class exposed, 77.6%
 - Penta-drug exposed, 30.3%
 - Refractory to last line of therapy, 89.7

Moreau P et al. N Engl J Med. 2022;387:495.

23

MajesTEC-1: Overall Response Rate for Teclistamab Monotherapy

Response (%)	Teclistamab
Overall response rate, % (n)	63 (104/165)
≥Complete response rate (%)	39.4
≥VGPR response rate (%)	58.8
sCR	32.7
CR	6.7
VGPR	19.4
PR	4.2

- At a median follow-up of 14.1 months (range: 0.3–24.4)
 - ORR of 63% (95% CI: 55.2–70.4) represents a substantial benefit for patients with triple-class–exposed disease
- Median time to first response: 1.2 months (range: 0.2–5.5)
- MRD negativity rate (by nextgeneration sequencing)
 - 26.7% at a threshold of $10^{\text{-5}}$
 - In patients who achieved ≥CR, the MRD-negativity rate was 46%

Moreau P et al. N Engl J Med. 2022;387:495.

MajesTEC-1: Duration of Response

- Median DOR 18.4 months
- Median PFS 11.3 months
- Median OS 18.3 months

Moreau P et al. N Engl J Med. 2022;387:495.

 Responses were durable and deepening over time

MajesTEC-1: Adverse Events

Any grade

- Hematologic
 - Neutropenia, 70.9%
 - Anemia, 52.1%
 - Thrombocytopenia, 40%
- Nonhematologic
 - CRS, 72.1%
 - Diarrhea, 28.5%
 - Fatigue, 27.9%
 - Nausea, 27.3
 - Pneumonia, 18.2%
 - COVID-19, 17.6%
 - Neurotoxic event, 14.5%

Moreau P et al. N Engl J Med. 2022;387:495.

Grade 3/4

- Hematologic
 - Neutropenia, 64.2%
 - Anemia, 37%
 - Thrombocytopenia, 21.2%
- Nonhematologic
 - CRS, 0.6%
 - Diarrhea, 3.6%
 - Fatigue, 2.4%
 - Nausea, 0.6
 - Pneumonia, 12.7%
 - COVID-19, 12.1%
 - Neurotoxic event, 0.6%

BCMA-Directed Bispecific Antibodies in Development						
Current Phase						
	Teclistamab	Approved!				
	Elranatamab	3				
	AMG 701	1/2				
	REGN5458	1/2				
	CC-93269	1				
	ABBV-383	1				
Moreau P, Touzeau C. <i>Blood</i> . 2022;139:3681.						

31

MagnetisMM-1: Adverse Events

Treatment Emergent Adverse Events	Grade 1	Grade 2	Grade 3	Grade 4	Total (n=55)
Hematologic, n (%)					
Neutropenia	0	2 (3.6)	14 (25.5)	25 (45.5)	41 (74.5)
Anemia	2 (3.6)	8 (14.5)	26 (47.3)	0	36 (65.5)
Lymphopenia	0	0	3 (5.5)	26 (47.3)	29 (52.7)
Thrombocytopenia	7 (12.7)	6 (10.9)	5 (9.1)	10 (18.2)	28 (50.9)
Nonhematologic, n (%)					
Cytokine release syndrome	28 (50.9)	20 (36.4)	0	0	48 (87.3)
Injection site reaction	27 (49.1)	4 (7.3)	0	0	31 (56.4)
Diarrhea	12 (21.8)	8 (14.5)	2 (3.6)	0	22 (40.0)
Fatigue	6 (10.9)	13 (23.6)	3 (5.5)	0	22 (40.0)

Jakubowiak AJ et al. J Clin Oncol. 2022;40. Abstract 8014.

BCMA Bispecifics

- High response rates
- Subcutaneous administration (schedule?)
- Durable?
- Efficacy after other BCMA-directed therapies
- Combination strategies
- TRIMM study: teclistamab + dara + pom

GPRC5D: <u>G</u> Protein-Coupled <u>R</u>eceptor <u>Class C Group 5 Member D</u>

- Orphan G protein–coupled receptor of unknown function
- Limited expression in healthy human tissue, primarily in plasma cells and hair follicles¹⁻²
- Highly expressed in myeloma cells and associated with poor prognostic factors in multiple myeloma¹⁻³
- No known shed peptides or extracellular domain shedding (reduced risk for sink effect)
- Ideal target for CD3 redirection

1. Smith EL et al. *Sci Transl Med.* 2019;11:eaau7746. 2. Pillarisetti K et al. *Blood.* 2020;135:1232. 3. Atamaniuk J et al. *Eur J Clin Invest* 2012;42:953.

35

Talquetamab: Overall Response Rate

Response	405 μg/kg SC QW (n=30)	800 μg/kg SC Q2W (n=44)
Median follow-up, mos (range)	13.2 (1.1–24.0)	7.7 (0.7–16.0)
ORR, n (%)	21 (70.0)	28 (63.6)
Triple-class–refractory patients, n/N (%)	15/23 (65.2)	23/34 (67.6)
Penta-drug–refractory patients, n/N (%)	5/6 (83.3)	9/12 (75)
Median tie to first confirmed response, mos (range)	0.9 (0.2–3.8)	1.2 (0.3–6.8)

Talquetamab: Duration of Response

37

Talquetamab: Safety Profile

AEs (≥20% of Total SC	405 μg/kg SC QW (n=30)		800 µg/kg SC Q2W (n=44)	
population)	Any Grade	Grade 3/4	Any Grade	Grade 3/4
Hematologic, n (%)				
Neutropenia	20 (66.7)	18 (60.0)	18 (40.9)	15 (34.1)
Anemia	17 (56.7)	9 (30.0)	21 (47.7)	12 (27.3)
Lymphopenia	12 (40.0)	12 (40.0)	18 (40.9)	18 (40.9)
Leukopenia	12 (40.0)	9 (30.0)	10 (22.7)	8 (18.2)
Thrombocytopenia	11 (36.7)	7 (23.3)	10 (22.7)	5 (11.4)
Nonhematologic, n (%)				
CRS	23 (76.7)	1 (3.3)	35 (79.5)	0
Skin-related AEs	20 (66.7)	0	32 (72.7)	1 (2.3)
Dysgeusia	19 (63.3)	NA	25 (56.8)	NA
Nail-related AEs	18 (60.0)	0	15 (34.1)	0
Rash-related AEs	14 (46.7)	1 (3.3)	13 (29.5)	7 (15.9)
Dysphagia	12 (40.0)	0	12 (27.3)	0
Pyrexia	11 (36.7)	0	10 (22.7)	0
Fatigue	10 (33.3)	1 (3.3)	12 (27.3)	0
Dry mouth	9 (30.0)	0	25 (56.8)	0
Weight decreased	9 (30.0)	0	19 (43.2)	1 (2.3)
Nausea	9 (30.0)	0	9 (20.5)	0

- Most common AEs were CRS, skinrelated events, and dysgeusia
 - Dysgeusia managed with supportive care and dose adjustments
- Cytopenias were mostly confined to step-up and cycle 1–2 doses and generally resolved within 1 week
- Infections occurred in 46.7% of patients at 405 µg/kg SC QW and 38.6% at 800 µg/kg SC Q2W (grade 3/4: 6.7%/9.1%)
- No patients died due to drug-related AEs

Minnema MC et al. J Clin Oncol. 2022;40. Abstract 8015.

41

Cevostamab: Adverse Events

N (%)	All Gr (N=53)	All Gr 3-4 (N=53)		
Hematologic AEs (≥15%)				
Platelet count decreased*	17 (32)	13 (25)		
Anemia	15 (28)	10 (19)		
Neutropenia	9 (17)	8 (15)		
Lymphocyte count decreased	8 (15)	8 (15)		
Non-hematologic AEs (≥15%)				
Cytokine release syndrome	40 (76)	1 (2)		
Hypomagnesemia	15 (28)	0		
Diarrhea	15 (28)	1 (2)		
Infusion-related reaction	12 (23)	0		
Hypokalemia	11 (21)	2 (4)		
Hypophosphatemia	10 (19)	5 (9)		
Nausea	10 (19)	0		
Fatigue	9 (17)	2 (4)		
AST increased	8 (15)	1 (2)		
*Platelet count decreased includes the terms thrombocytopenia and platelet				

*Platelet count decreased includes the terms thrombocytopenia and platelet count decreased; *AE considered by the investigator to be related to study treatment

Cohen AD et al. Blood. 2020;136. Abstract 292.

- Median follow-up: 8.1 months (range: 0.2–30.4)
- 28 patients with serious AEs
 - Treatment-related[†] events (13 patients) in ≥2 patients were CRS (6 patients)
- 5 patients (9%) with AEs leading to withdrawal
 - Treatment-related events (2 patients) were pneumonitis (1 patient) and meningitis (1 patient)
- 7 pts (13%) with Gr 5 AE (malignant neoplasm progression, 5 patients; respiratory failure, 2 patients)
 - No treatment-related Gr 5 events
- 1 patient (2%) with DLT of Gr 3 pneumonia in the 3.6/90 mg cohort; MTD not reached

Dr. Richardson has disclosed the following relevant financial relationships:

Consultant/Advisor: AstraZeneca, Bristol Myers Squibb/Celgene, GlaxoSmithKline, Karyopharm Therapeutics, Oncopeptides, Protocol Intelligence, Regeneron, Sanofi, Secura Bio, Takeda

Research Grants: Bristol Myers Squibb/Celgene, Karyopharm Therapeutics, Oncopeptides, Takeda

47

Selected Emerging Treatment Options for MM 2022: Novel MOAs

- Novel mechanisms of action are urgently needed and are being brought forward into early relapse and NDMM
- **Emerging role of cellular therapies** (CAR T-cell therapies), bispecific antibodies, and more
- Continued promise of small molecules and targeted agents (eg, peptide drug conjugates, CELMoDs, venetoclax)
- Further development of novel combinations (eg, with belantamab mafodotin, selinexor, immunoconjugates)

Richardson PG. 13th Annual IMWG Summit, Vienna, Austria, June 2022. Adapted from *Blood Rev* 49. Ramasamy K, et al. Improving outcomes for patients with relapsed multiple myeloma: Challenges and considerations of current and emerging treatment options. Copyright 2021, with permission from Elsevier.

49

Multiple Therapies Approved or Under Investigation in RRMM

Backbone/standard-of-care agents				Recent approvals/later relapse					
IMiDs	PIs	mAbs	HDACis	ADCs	Targeted therapies	CAR T-cell therapies			
Lenalidomide	Bortezomib*	Daratumumab (CD38)	Panobinostat‡	Belantamab mafodotin	Selinexor	ldecabtagene vicleucel	lberdomide [†]	Teclistamab (BCMA × CD3)	CAR NK cell therapies [†]
Pomalidomide	Carfilzomib	lsatuximab (CD38)	Vorinostat†		Venetoclax	Ciltacabtagene autoleucel	Mezigdomide ¹	Elranatamab [†] (BCMA × CD3)	Immune checkpoint inhibitors†
Thalidomide	lxazomib	Elotuzumab (SLAMF7)			Melflufen ^{†‡1}			Pavurutamab [†] (BCMA × CD3)	Immuno- cytokines†
	Marizomib [†] Several agents have been recently approved for later relapses in RRMM;								
these agents are moving up the treatment algorithm and being investigated in combination regimens with the standard-of-care backbone regimens									
*Also approved in combination with liposomal doxorubicin; †Not currently approved in RRMM; ‡FDA approval withdrawn. ¶Positive recommendation from CHMP for full EMA approval; [§] Granted FDA Breakthrough Therapy designation.									
Adapted from Richardson PG. 8 th COMy World Congress, Paris, France, May 2022. Moreau P et al. <i>Lancet Oncol.</i> 2021;22:e105.									

Belantamab Mafodotin: Initial Approval Based on DREAMM-2 in Heavily Pretreated RRMM

Patients

Safety 72% overall rate of keratopathy*

Grade 3/4 keratopathy in 27% (2.5

mg/kg) and 21% (3.4 mg/kg) of

Grade 3/4 thrombocytopenia in

3% discontinued due to corneal

20% and 33%, anemia in 20% and 25%, respectively

- Median age: 65 and 67 years
- High-risk cytogenetics: 42% and 47%
 Median prior lines of therapy:
- 7 and 6 • 90% and 89% lenalidomide-refractory
- 76% and 75% bortezomib-refractory
- 100% and 92% daratumumab-
- refractory
- 2.5 mg/kg chosen for further

patients

studies						
	Belantamab mafodotin 2.5 mg/kg (n=97)	Belantamab mafodotin 3.4 mg/kg (n=99)				
ORR	32%*	35%				
Median DOR, months	11.0	6.2				
Median PFS, months	2.8	3.9				
Median OS, months	13.7*	14.0				

Reprinted from Lancet Oncol 21(2). Lonial S, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. 207-221. Copyright 2020, with permission from Elsevier. *Updated: Lonial S et al. Cancer. 2021;127:4198.

Other Novel Targeted Agents for RRMM: Selinexor Mechanism of Action: Inhibition of XPO1

BOSTON Trial: Selinexor-Vd vs Vd in Patients With MM Who Had Received 1–3 Prior Therapies (FDA Approved)

Other Selinexor Combinations in RRMM

Study	Phase	ClinicalTrials.gov	Setting	Primary endpoint	Initial completion
BENCH	3	NCT04939142	1–3 prior lines Relapsed or refractory MM	PFS	July 2024
NCI-2020-13697	2	NCT04756401	 1–3 prior lines Selinexor + Dara-Kd 	MRD-negativity rate	September 2023
STOMP	1/2	NCT02343042	Multiple settings Combinations with Pom-dex, Vd, Rd, Pom-Vd, Dara-dex, Kd, Ixa-dex, Elo-Pom-dex, Belamaf-dex, Dara-Pom-dex	MTD/RP2D ORR	January 2025
SELIBORDARA	2	NCT03589222	 ≥3 prior lines Selinexor + Dara-Vd 	ORR	August 2023
SCOPE	1/2	NCT04764942	 • ≥2/3 prior lines • Selinexor-Pom-dex ± carfilzomib 	MTD ORR	March 2025
EMN29	3	NCT05028348	 1–4 prior lines Selinexor-Pom-dex vs Elo-Pom-dex 	PFS	July 2023
NCI-2014-011991	1	NCT02199665	• ≥2 prior lines • Selinexor + Kd	MTD	July 2022
Pro2020-0369	2	NCT04661137	Refractory to/disease progression on prior carfilzomib-, pomalidomide-, or daratumumab-containing regimen Selinexor + Kd, Pom-dex, Dara-dex	ORR	January 2023
ClaSPd	2	NCT04843579	Selinexor + clarithromycin + Pom-dex	ORR, AEs	November 2023
SELVEDge	2	NCT05530421	Selinexor + venetoclax + dex in t(11;14)-positive RRMM	ORR	December 2025
ATG-010-IIT-MM-001	1/2	NCT04891744	Selinexor + Thal-dex	ORR	December 2024
ATG-010-IIT-MM-004	2	NCT04941937	Selinexor + Thal-dex/Rd/Pom-dex	ORR	December 2025
ATG-010-IIT-MM-002	2	NCT04877275	Selinexor + Doxil + Cyclo + dex	ORR	December 2024

1. Jakubowiak AJ et al. Br J Haematol. 2019;186:549.

Ixa-Pom-Dex: Randomized Phase 2 Alliance Study A061202

Response	Pom-dex (n=39)	lxa-Pom-dex (n=38)
ORR (95% CI) sCR/CR VGPR PR	43.6% (27.8%–60.4%) 2.6% 2.6% 38.5%	63.2% (46.0%-78.2%) 0.0% 29.0% 34.2%
≥VGPR	5.1%	29.0%
Median DOR (months, range)	12.3 (2.8–42.3+)	23.7 (1.8–40.9+)

Pom-dex

Grade 3/4 AEs included lymphopenia 26%, neutropenia 21%, anemia 13%, and fatigue 15%

Ixa-Pom-dex

- Grade 3/4 AEs included lymphopenia 40%, neutropenia 37%, anemia 16%, fatigue 16%, and hyperglycemia 11%
- No increase in discontinuation or dose adjustments for toxicity No COVID-related deaths and no treatment-related mortality in either arm
- Voorhees P et al. *HemaSphere*. 2022;6. Abstract P968. Voorhees P et al. IMS 2022. Abstract P282.

80 patients registered: 3 found to be ineligible, with 77 randomized and evaluable.

59

Other Novel Targeted Agents: Melflufen-Cytotoxic Drug-Peptide Conjugate

- Melphalan flufenamide: novel targeted cytotoxic drug-peptide conjugate mechanism¹
- Rapidly taken up by plasma cells due to high lipophilicity
- Once inside, aminopeptidases cleave the compound and release melphalan "warhead," where it causes maximal DNA damage to MM
- Active in melphalan and other alkylator resistance
- Potent activity in extramedullary disease
- Targeting "stemness?"
- Current dosing/dexamethasone is IV q28d; no mucositis or alopecia seen
- Granted FDA priority review in August 2020 and approved in March 2021
- FDA approval provisionally held, October 2021
- EMA review completed, CHMP recommended full approval, June 2022

- BMSCs more sensitive to melflufen than melphalan⁴
- Cytotoxicity of melflufen in MM cells not affected by co-culture with BMSCs
- Overcomes 17p deletion in resistant MM

1. Adapted from Richardson PG et al. HemaSphere. 2020;4. Abstract EP945. 2. Chauhan D et al. Clin Cancer Res. 2013;19:3019 3. Ray A et al. Br J Haematol. 2016;174:397. 4. Gebraad A et al. Cells. 2022;11:1574.

61

OCEAN (OP-103) Phase 3 Trial in RRMM: Melflufen-dex vs Pom-dex

• Phase 3, randomized, open-label, controlled, head-to-head, comparison study

ECOG PS, Eastern Cooperative Oncology Group performance status; EoT, end of treatment; IMWG, International Myeloma Working Group; IRC, Independent Review Committee; ISS, International Staging System; IV, intravenous; PO, orally; y, years. Schjesvold FH et al. *Lancet Haematol* 2022;9(2):E98.

attivation

of caspases

vtochron

t(11;14) (in ~20% of MM patients) activates BCL-2 overexpression; also more common in PCL

Figure 1 from Sgherza N et al. Novel approaches outside the setting of immunotherapy for the treatment of multiple myeloma: the case of melflufen, venetoclax, and selinexor. *Front Oncol.* 2021; 11:716751. Copyright © 2021 Sgherza, Curci, Rizzi, and Musto.

Multiple Therapies Approved or Under Investigation in RRMM

Backbone/standard-of-care agents						Emerging therapies for MM			
IMiDs	Pls	mAbs	HDACis				CELMoDs	BiTEs/ bispecifics	Others
Lenalidomide	Bortezomib*	Daratumumab (CD38)	Panobinostat‡	Belanta mab mafo dotin	Selinexor	ldecabtagene vicleucel	Iberdomide [†]	Teclistamab (BCMA × CD3)	CAR NK cell therapies [†]
Pomalidomide	Carfilzomib	ls atuximab (CD38)	Vorinostat [†]		Venetoclax	Ciltacabtagene autoleucel	Mezigdomide [†]	Elranatamab [†] (BCMA × CD3)	Immune checkpoint inhibitors [†]
Thalidomide	lxazomib	Elotuzumab (SLAMF7)			Melflufen ^{†‡¶}			Pavurutamab [†] (BCMA × CD3)	Immuno- cytokines†
	Marizomib [†] Multiple emerging therapies for RRMM, including CELMoDs and CD3								
the RRMM treatment landscape in the next 5 years, with teclistamab the first to be approved, by EMA, in August 2022									
*Also approved in combination with liposomal doxorubicin; [†] Not currently approved in RRMM; [‡] FDA approval withdrawn. [¶] Positive recommendation from CHMP for full EMA approval; [§] Granted FDA Breakthrough Therapy designation.									
Adapted from Richardson PG. 8th COMy World Congress, Paris, France, May 2022.									

Iberdomide Enhances In Vitro Immune-Stimulatory Activity vs Lenalidomide and Pomalidomide

		lberdo	mide in R	RMM	
Study	Phase	ClinicalTrials.gov	Setting	Primary end point	Initial completion
EXCALIBER- RRMM	3	NCT04975997	 1–2 prior lines Iberdomide + Dara-dex vs Dara-Vd 	PFS	April 2026
ICON	2	NCT04392037	 2-4 prior regimens Iberdomide + Cd	PFS	November 2023
I2D IFM2021_03	2	NCT04998786	• 1 st relapse • Iberdomide + Ixa-dex	≥VGPR rate	January 2025
CC-220-MM-001	1/2	NCT02773030	• RRMM • Iberdomide + dex, Vd, Dara-dex, Kd	MTD/RP2D ORR	May 2026
TIG-007	1/2	NCT05289492	• RRMM • Iberdomide + EOS884448 ± dex	Safety ORR	February 2024
Iberdomide is being more extensively investigated in NDMM; this is the anticipated primary treatment setting in the future					

69

Conclusions and Future Directions

PIs, IMiDs, mAbs have produced significant improvements in PFS and OS in NDMM and in RRMM

- Quadruplets are emerging standards of care in NDMM
- Quadruplet regimens also under investigation in non-transplant setting, with a focus on younger/fit patients MRD negativity a key goal of therapy; MRD-adapted therapy emerging deferred ASCT approach Triplets are standards of care in early RRMM

Next wave of immune therapies: mAbs (including ADCs, bispecifics) represent true new novel mechanisms, as well as other immuno-therapeutics (eg, CAR T cells)

- Next-generation standards of care in NDMM and/or at first relapse? BCMA-targeted approaches may become a fourth pillar of NDMM treatment Baseline immune function is a key barrier to success and may be targetable
- Question of sequencing
- Crucially, are new therapies agnostic to mutational thrust?

Next-generation small molecules/targeted therapy show great promise (eg, selinexor, melflufen, CELMoDS) under investigation in NDMM and RRMM

New insights to mechanisms of drug action are further expanding treatment/immuno-therapeutic opportunities with combinations

Additional novel immune therapies being investigated later in the treatment course - will move to earlier/first relapse if therapeutic potential emerges

75

Audience Question

What would you recommend for this patient?

- A. Belantamab mafodotin as part of a clinical trial
- B. Selinexor, bortezomib, dexamethasone
- C. BCMA-targeted bispecific antibody
- **D**. BCMA-targeted CAR T cell therapy

79

	What makes a patient a candidate for either
T Cell–	bispecifics or CAR T cells?
activating therapy	 Is there anything about this patient that makes one treatment more suitable than the other?
	• If this patient was to elect to receive CAR T
Eligibility	cell therapy, what are the steps to take to ensure that he receives this therapy?
	– Referral process
Panel	 Bridging therapy
discussion	 Manufacturing slot
questions	– Insurance
questions	 What other options are available for this
	patient if access to CAR T cells is difficult?

81

83

T Cell- activating therapy <i>Adverse</i> <i>events</i>	 What other options are available for this patient if access to a bispecific antibody is difficult? Which AEs should clinicians and patients expect on bispecific T cell-activating therapies? CRS Hallmark: fever Grading Distinguishing from infection? Treatment/management Neurotoxicity/ICANS Features
Panel discussion questions	 Treatment/management Any other unique features? Bispecifics: infection prophylaxis, immune globulin? PJP, pneumonia COVID risk? What about non-BCMA targets (skin, taste, rash)

