Management of Patients Who Have Relapsed After One to Three Prior Lines of Therapy

March 8, 2023

Tech Support

1-719-234-7952
Resources

- Resource tab includes
 - Speaker bios
 - Copy of the slide presentation
 - Exhibit Hall

Submit your questions throughout the program!
MMRF Research Initiatives

For more information, please visit themmrf.org

Speakers

Larry D. Anderson, Jr., MD, PhD
UT Southwestern Medical Center
Simmons Comprehensive Cancer Center
Dallas, Texas

Faith E. Davies, MBBCh, MD
Perlmutter Cancer Center
New York University/Langone Health
New York, New York
Treatment Options and Considerations for Multiple Myeloma Patients at Relapse

Faith E. Davies, MBBCh, MD
Perlmutter Cancer Center
New York University/Langone Health
New York, New York

Multiple Myeloma Is a Marathon, Not a Sprint

Asymptomatic | Symptomatic | Relapsing | Refractory

MGUS or smoldering myeloma

Induction remission ± SCT

1st RELAPSE

Plateau remission

2nd RELAPSE

REFRACTORY RELAPSE

First-line therapy | Second line | Third line

Adapted from Borrello I. Leuk Res. 2012;36 Suppl. 1:S3.
Definitions: What is relapsed/refractory disease and a line of therapy?

- **Relapsed**: recurrence (reappearance of disease) after a response to therapy
- **Refractory**: progression despite ongoing therapy
- **Progression**: change in M protein/light chain values
- **Line of therapy**: change in treatment due to either progression of disease or unmanageable side effects
 - **Note**: initial (or induction) therapy + stem cell transplant + consolidation/maintenance therapy = 1 line of therapy

Biochemical Relapse or Clinical Relapse

Biochemical
- Patients with asymptomatic rise in blood or urine M protein, free light chains, or plasma cells

Clinical
- Based on direct indicators of increasing disease and/or end-organ dysfunction

Timing of therapy initiation/escalation dependent on numerous factors

Mandates immediate initiation/escalation of therapy
Choosing Therapy for First or Second Relapse

Choices are broadest and guided by
- Disease biology
- Nature of relapse
- Patient preference

Factors to consider
- Prior autologous stem cell transplant
- Prior therapies
- Aggressiveness of relapse
- Comorbidities
- Psychosocial issues
- Access to care

Options for Relapsed/Refractory Disease Continue to Increase

<table>
<thead>
<tr>
<th>IMiDs</th>
<th>Proteasome inhibitors</th>
<th>Chemotherapy anthracyclines</th>
<th>Chemotherapy alkylators</th>
<th>Steroids</th>
<th>Novel mechanisms of action</th>
<th>mAbs</th>
<th>Cellular therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thalidomide (thalidomide)</td>
<td>Velcade (bortezomib)</td>
<td>Adriamycin</td>
<td>Cytoxan (cyclophosphamide)</td>
<td>Dexamethasone</td>
<td>XPOVIO (selinexor)</td>
<td>Empliciti (elotuzumab)</td>
<td>Abecma (idecabtagene viciecul)</td>
</tr>
<tr>
<td>Revlimid (lenalidomide)</td>
<td>Kyprolis (carfilzomib)</td>
<td>Doxil (liposomal doxorubicin)</td>
<td>Bendamustine</td>
<td>Prednisone</td>
<td>Venclexa (venetoclax)*</td>
<td>Darzalex (daratumumab)</td>
<td>Canvykti (ciltaclabtagene autoleucel)</td>
</tr>
<tr>
<td>Pomalyst (pomalidomide)</td>
<td>Ninlaro (ixazomib)</td>
<td>Melphalan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Not yet FDA-approved for patients with multiple myeloma; †Withdrawn from the US market in 2021; ‡Antibody-drug conjugate

New formulations, new dosing, and new combinations, too!
Management of Patients Who Have Relapsed After One to Three Prior Lines of Therapy
Webinar March 8, 2023

Treatment Approach

First relapse
- Proteasome inhibitor (PI)/immunomodulatory drug (IMiD)/antibody-based therapy

>1 Relapse
- Any options for first relapse not tried
 - Refractory to Velcade and Revlimid
 - DKd, Isa-Kd, DPd, Elo-Pd, Isa-Pd, or KPd
 - Refractory to an IMiD but sensitive to a PI or
 - DVd, SVd, Ven-Vd (for t[11;14])

Triple-class refractory
- Approved therapies
 - Sd, belamaf, ide-cel, ciltacabtagene autoleucel
 - Bispecific antibodies, CAR T cells, CELMoDs

Approved therapies
- Clinical trials

*Not yet approved for use in myeloma patients

Second ASCT an Option for Early Relapse

- **Time to progression**

 ![Graph showing progression-free (%) vs. time from randomization (months)](image)

 - **P < 0.0001**
 - **Second ASCT**
 - **Cyclophosphamide**

Proteasome Inhibitor–Based Regimens for Early Relapse

<table>
<thead>
<tr>
<th>OPTIMISMM</th>
<th>ASPIRE</th>
<th>TOURMALINE-MM1</th>
<th>BOSTON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regimens Compared</td>
<td>VPd: 11 vs 7 months</td>
<td>KRd: 26 vs 17 months</td>
<td>XPO-Vd: 14 vs 9 months</td>
</tr>
<tr>
<td>Median progression-free survival favored:</td>
<td>Vp: 11 vs 7 months</td>
<td>KRd: 26 vs 17 months</td>
<td>IRd: 21 vs 15 months</td>
</tr>
</tbody>
</table>

Important Considerations for Use of Proteasome Inhibitors

Velcade
- Risk of peripheral neuropathy (PN; numbness, tingling, burning sensations and/or pain due to nerve damage)
 - Avoid in patients with severe existing PN
 - Reduced with subcutaneous once-weekly dosing
- High risk of shingles
 - Use appropriate vaccination
- No dose adjustment for kidney issues; but adjust for liver issues

Kyplosis
- Less PN than Velcade
- High risk of shingles
 - Use appropriate vaccination
- Monitor for heart, lung, and kidney side effects
 - Use with caution in older patients with cardiovascular risk factors
- High blood pressure
- No dose adjustment for kidney issues; but adjust for liver issues

Ninlaro
- Less PN than Velcade
- High risk of shingles
 - Use appropriate vaccination
- Monitor for rash and gastrointestinal (GI) side effects
 - GI effects occur early
- Needs to be taken at least 1 hour before or 2 hours after a meal

Do not take any supplements without consulting with your doctor.
Important Considerations for Use of Immunomodulatory Drugs

Revlimid*
- Rash
 - Consider antihistamines
- Diarrhea
 - Consider bile acid sequestrants
- Risk of blood clots
- Risk of second primary malignancies
- Dose adjustment based on kidney function

Pomalyst*
- Low blood counts
- Less rash than Revlimid
- Risk of second primary malignancies
- Risk of blood clots

*Black box warning.

Important Considerations for Use of XPOVIO

- **Gastrointestinal**
 - Begin prophylactic anti-nausea medications. Consult with your doctor if nausea, vomiting, or diarrhea occur or persist.

- **Low sodium** (hyponatremia)
 - Maintain fluid intake. Salt tabs

- **Fatigue**
 - Stay hydrated and active.

- **Low blood counts** (cytopenias)
 - Report signs of bleeding right away. Report signs of fatigue or shortness of breath.

Chari A et al. Manuscript under preparation.
Proteasome Inhibitor–Based Regimens for Early Relapse

<table>
<thead>
<tr>
<th>Regimens compared</th>
<th>OPTIMISMM</th>
<th>ASPIRE</th>
<th>TOURMALINE-MM1</th>
<th>BOSTON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velcade-Pomalyst-dex (VPd) vs Vd</td>
<td>Velcade-Revlimid-dex (KRd) vs Rd</td>
<td>Ninlaro-Rd (IRd) vs Rd</td>
<td>XPOVIO-Velcade-dex (XPO-Vd) vs Vd</td>
<td></td>
</tr>
<tr>
<td>Median progression-free survival favored</td>
<td>VPd: 11 vs 7 months</td>
<td>KRd: 26 vs 17 months</td>
<td>IRd: 21 vs 15 months</td>
<td>XPO-Vd: 14 vs 9 months</td>
</tr>
<tr>
<td>Clinical considerations</td>
<td>Consider for relapse on Revlimid</td>
<td>KRd associated with more upper respiratory infections and high blood pressure than Rd</td>
<td>IRd an oral regimen</td>
<td>XPO-Vd associated with low platelet counts and fatigue with triplet, but less neuropathy than the Vd</td>
</tr>
</tbody>
</table>

Monoclonal Antibody–Based Regimens at Relapse

Larry D. Anderson, Jr., MD, PhD
UT Southwestern Medical Center
Simmons Comprehensive Cancer Center
Dallas, Texas
Monoclonal Antibody–Based Regimens for Early Relapse: Darzalex

<table>
<thead>
<tr>
<th>POLLUX</th>
<th>CASTOR</th>
<th>CANDOR</th>
<th>APOLLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regimens compared</td>
<td>DRd: Not reached vs 17 months</td>
<td>DVd: 17 vs 7 months</td>
<td>DKd: Not reached vs 16 months</td>
</tr>
<tr>
<td>Median progression-free survival favored</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darzalex-Revlimid-dex (DRd) vs Rd</td>
<td>Darzalex-Velcade-dex (DVd) vs Vd</td>
<td>Darzalex-Kyprolis-dex (DKd) vs Kd</td>
<td>Darzalex-Pomalyst-dex (DPd) vs Pd</td>
</tr>
</tbody>
</table>

Important Considerations for Use of Darzalex

- **Darzalex**
 - Infusion reactions
 - Less with SC use
 - Risk of shingles
 - Use appropriate vaccination

 IV infusion or SC injection
Monoclonal Antibody–Based Regimens for Early Relapse: Darzalex

<table>
<thead>
<tr>
<th>POLLUX</th>
<th>CASTOR</th>
<th>CANDOR</th>
<th>APOLLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regimens compared</td>
<td>Darzalex-Revlimid-dex (DRd) vs Rd</td>
<td>Darzalex-Velcade-dex (DVd) vs Vd</td>
<td>Darzalex-Kyprolis-dex (DKd) vs Kd</td>
</tr>
<tr>
<td>Median progression-free survival favored</td>
<td>DRd: Not reached vs 17 months</td>
<td>DVd: 17 vs 7 months</td>
<td>DKd: Not reached vs 16 months</td>
</tr>
<tr>
<td>Clinical considerations</td>
<td>Consider for relapses from Revlimid or Velcade maintenance</td>
<td>Consider for patients who are Revlimid-refractory without significant neuropathy</td>
<td>Consider for younger, fit patients who are double-refractory to Revlimid and Velcade</td>
</tr>
</tbody>
</table>

Monoclonal Antibody–Based Regimens for Early Relapse: Sarclisa and Empliciti

<table>
<thead>
<tr>
<th>ELOQUENT-2</th>
<th>ELOQUENT-3</th>
<th>ICARIA-MM</th>
<th>IKEMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regimens compared</td>
<td>Empliciti-Revlimid-dex vs Rd</td>
<td>Empliciti-Pomalyst-dex vs Pd</td>
<td>Sarclisa-Pomalyst-dex vs Pd</td>
</tr>
<tr>
<td>Median progression-free survival favored:</td>
<td>Empliciti-Rd: 19 vs 15 months</td>
<td>Empliciti-Pd: 10 vs 5 mos</td>
<td>Sarclisa-Pd: 12 vs 7 mos</td>
</tr>
</tbody>
</table>
Important Considerations for Use of Monoclonal Antibodies

<table>
<thead>
<tr>
<th>Sarclisa</th>
<th>Empliciti</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Infusion reactions
• Risk of shingles
– Use appropriate vaccination</td>
<td>• Lower rate of infusion reactions than Darzalex or Sarclisa
• Risk of shingles
– Use appropriate vaccination</td>
</tr>
</tbody>
</table>

![IV infusion icon](image)

Monoclonal Antibody–Based Regimens for Early Relapse: Sarclisa and Empliciti

<table>
<thead>
<tr>
<th>ELOQUENT-2</th>
<th>ELOQUENT-3</th>
<th>ICARIA-MM</th>
<th>IKEMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regimens compared</td>
<td>Empliciti-Revlimid-dex vs Rd</td>
<td>Empliciti-Pomalyst-dex vs Pd</td>
<td>Sarclisa-Pomalyst-dex vs Pd</td>
</tr>
<tr>
<td>Median progression-free survival favored</td>
<td>Empliciti-Rd: 19 vs 15 months</td>
<td>Empliciti-Pd: 10 vs 5 mos</td>
<td>Sarclisa-Pd: 12 vs 7 mos</td>
</tr>
<tr>
<td>Clinical considerations</td>
<td>Consider for non-Revlimid refractory, frailer patients
Overall survival benefit with Empliciti-Rd
Empliciti-Rd associated with more infections</td>
<td>Consider for patients refractory to Revlimid and a proteasome inhibitor (Velcade, Kyprolis, Ninlaro)
Sarclisa-Pd associated with severe low white blood cell counts, more dose reductions, upper respiratory infections, and diarrhea</td>
<td>Consider for patients refractory to Revlimid and Velcade
Sarclisa-Kd associated with higher MRD negativity rates
Sarclisa-Kd associated with severe respiratory infections</td>
</tr>
</tbody>
</table>
Current and Emerging Therapies for Relapsed/Refractory Multiple Myeloma

Current therapies

Antibody-drug conjugates
- Blenrep
- Targets BCMA
- A monoclonal antibody conjugated by a protease-resistant linked to a microtubule-disrupting agent

Chimeric antigen receptor (CAR) T cells
- Abecma and Carvykti
- Targets BCMA
- Genetically modified autologous T cells that attack myeloma cells

Emerging therapies

Bispecific antibodies
- Teclistamab, elranatamab, and others
- Targets BCMA on myeloma cells and CD3 on T cells
- Redirects T cells to myeloma cells

Cereblon E3 ligase modulators (CELMoDs)
- Iberdomide
- Targets cereblon
- Enhances tumoricidal and immune-stimulatory effects compared with immunomodulatory agents

Small molecule inhibitors
- Venetoclax
- Targets Bcl-2
- Induces multiple myeloma cell apoptosis

Summary

- We now have many different options for relapsed myeloma depending on patient and myeloma factors at relapse.
- Therapy choices will depend on teamwork between physician and patient and caregivers and are based on multiple decision points.
- Combinations of proteasome inhibitors with either immunomodulatory drugs or selinexor improve progression-free survival.
- We have three different monoclonal antibodies that improve progression-free survival when added to other standard therapies without significantly increasing side effects.
- In general, three-drug combinations are going to work better than two drugs.
- Many other exciting immunotherapy options are in trials and look very promising.
Recent Updates

Sarclisa After Early or Late Relapse

IKEMA Study

Patients with relapsed/refractory myeloma who received 1–3 prior therapies, had no prior therapy with Kyprolis, and were not refractory to prior anti-CD38 antibody

<table>
<thead>
<tr>
<th>Early relapse</th>
<th>Late relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarclisa-Kd</td>
<td>Kd</td>
</tr>
<tr>
<td>Kd</td>
<td>Sarclisa-Kd</td>
</tr>
</tbody>
</table>

- **Median PFS (months)**
 - Early: 24.7
 - Late: 21.9
- **Overall response rate (%)**
 - Early: 82
 - Late: 90.4
- **≥VGPR rate (%)**
 - Early: 67.2
 - Late: 76
- **MRD negativity rate (%)**
 - Early: 24.6
 - Late: 37.5
- **MRD-negative CR rate (%)**
 - Early: 18
 - Late: 30.8

Data evaluated according to patients who experienced an early* versus late† relapse.

*<12 months from initiation of most recent line of therapy (for patients who had ≥2 lines of therapy); <18 months (for patients who had 1 prior line of therapy) and <12 months from ASCT
†≥12 months from initiation of most recent line of therapy (for patients who had ≥2 lines of therapy; ≥18 months for patients who had 1 prior line of therapy)

Regardless of early or late relapse, RRMM patients benefit from the use of isa-Kd with respect to depth of response and prolonged PFS.

CAR T-Cell Therapy

Genetically modified T cells designed to recognize specific proteins on myeloma cells

CAR T cells are activated once in contact with the myeloma cell and can destroy it

CAR T cells can persist for long periods of time in the body

CAR T cells are created from a patient’s own blood cells, but the technology is evolving to develop “off-the-shelf” varieties

CAR, chimeric antigen receptor; MM, multiple myeloma; BCMA, B-cell maturation antigen

B-cell maturation antigen (BCMA)

Two CAR T-cell therapies approved!
• Abecma (ide-cel)
• Carvykti (cilta-cel)

Prognostic value of depth of response following CAR T-cell therapy

• Achieving sustained, undetectable MRD after Abecma is associated with prolonged PFS
• Only MRD status—not complete response (CR) status—predicted early relapse 1 month after Abecma
• Both MRD and CR status at 12 months were required to identify patients with longer PFS

Real-world outcome with Abecma after BCMA-targeted therapy

• 11 US academic centers conducted a retrospective analysis on the real-world outcome for patients treated with Abecma after previously receiving BCMA-targeted therapy
• Prior BCMA-targeted treatment is associated with inferior PFS and a trend toward inferior outcomes for patients receiving Abecma within 6 months of having received prior BCMA-targeted therapy
• WARRANTS further investigation into the optimal timing of Abecma infusion

Outcomes and options following relapse from CAR T

• A retrospective analysis of 78 patients with RRMM who received BCMA-targeted CAR T-cell therapy
• Patients who had previously been refractory to a specific drug class re-responded after CAR-T relapse
• Median OS after progressing on CAR T was 14.8 months and 18 months for patients who received subsequent BCMA CAR T or BCMA bispecific antibodies within 6 months of progressing on CAR T

Assessment of cytopenias from CAR T

• Retrospective review of data from 90 patients 4 months after CAR T-cell infusion
• Patients with poor hematologic recovery (28%) compared with adequate recovery (72%) were older, more heavily pretreated, and more likely to have received ≥1 ASCT

Abecma in earlier lines of treatment

• KarMMa-2 phase 2 multicenter study of Abecma in 37 patients with RRMM with high-risk disease
• Results show a benefit to Abecma in earlier line of treatment

*Early relapse after frontline therapy or inadequate response after frontline ASCT

What’s next for CAR T-cell therapy?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>• Targets BCMA with a shortened manufacturing time through the NEXT-T process</td>
<td>• Targets BCMA and CD19 • Manufacturing process that takes as little as 24 hours</td>
<td>• Targets GPRC5D</td>
</tr>
<tr>
<td>Trial details</td>
<td>• Phase 1 trial of 55 patients with RRMM with a median of 5 prior lines of therapy</td>
<td>• Phase 1 trial of 13 newly diagnosed high-risk myeloma patients ineligible for stem cell transplant</td>
<td>• Phase 1 trial of 17 heavily pretreated patients with RRMM, including those who relapsed from BCMA CAR-T therapy</td>
</tr>
<tr>
<td>Results</td>
<td>• CRS occurred in 80% of patients with only 1 patient experiencing ≥G3 • Neurotoxicity occurred in 10.9% of patients (one grade 4) • Overall response rate was 98.1% with 57.4% achieving ≥VGPR (29.6% ≥CR)</td>
<td>• 100% of patients achieved ≥VGPR (69% sCR) • All patients achieved MRD negativity (by EuroFlow) • CRS observed in 23% of patients (all low grade)</td>
<td>• Neutropenia and thrombocytopenia most frequent grade 3/4 adverse events • Additional adverse events include skin- and nail-related; CRS; ICANS; dysgeusia/dysphagia • 88% evaluable patients responded, including 7 of 11 patients treated with prior BMCA-targeted treatment</td>
</tr>
</tbody>
</table>

Bispecific Antibodies

Bispecific antibodies are also referred to as dual specific antibodies, bifunctional antibodies, or T-cell engaging antibodies.

Bispecific antibodies can target two cell surface molecules at the same time (one on the myeloma cell and one on a T cell).

Many different bispecific antibodies are in clinical development; none are approved for use in myeloma.

Availability is off-the-shelf, allowing for immediate treatment.

Bispecifics Discussed at ASH in 2022

BCMA
- Highly expressed only on the surface of plasma cells
- Myeloma patients have significantly higher serum BCMA levels than healthy individuals

GPRC5D
- Highly expressed on myeloma cells in the bone marrow
- Lowly expressed on hair follicles, but not on other healthy cells
- Expression on myeloma cells is independent of BCMA

FcRH5
- Selectively expressed on B cells and plasma cells

CD3: a T-cell receptor

Elranatamab in Patients With Relapsed/Refractory Multiple Myeloma

Updated efficacy and safety results with elranatamab (MagnetisMM-1 Study)¹

Phase 1 study in RRMM (91% triple-class refractory)

- **Patients Responding (%)**
 - PR: 27.3
 - VGPR: 10.9
 - CR: 18.2
 - sCR: 7.3

Median duration of response 17.1 months.

MagnetisMM-3 study of elranatamab²

Phase 2 study in RRMM refractory to at least 1 PI, 1 IMiD, and 1 anti-CD38 antibody—no prior BMCA-targeted treatment

- **Patients Responding (%)**
 - PR: 13
 - VGPR: 14.6
 - CR: 27.6
 - sCR: 5.7

IMiD, immunomodulatory drug; PI, proteasome inhibitor

Phase 1 Study of Alnuctamab in Patients With Relapsed/Refractory Multiple Myeloma

Intravenous Formulation Results

<table>
<thead>
<tr>
<th></th>
<th>IV alnuctamab (n=55)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median follow up (months)</td>
<td>8.0</td>
</tr>
<tr>
<td>Overall response rate (%)</td>
<td>39</td>
</tr>
<tr>
<td>Median duration of response (months)</td>
<td>33.6</td>
</tr>
<tr>
<td>Responses ongoing (%)</td>
<td>48</td>
</tr>
<tr>
<td>Median PFS (months)</td>
<td></td>
</tr>
<tr>
<td>All patients</td>
<td>3.1</td>
</tr>
<tr>
<td>Responders</td>
<td>36.4</td>
</tr>
<tr>
<td>Nonresponders</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Subcutaneous Formulation Results

<table>
<thead>
<tr>
<th></th>
<th>PR</th>
<th>VGPR</th>
<th>CR</th>
<th>sCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>All doses (n=55)</td>
<td>16</td>
<td>14</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td><30 mg (n=29) Target Dose</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>30 mg (n=26)</td>
<td>11</td>
<td>14</td>
<td>27</td>
<td>19</td>
</tr>
</tbody>
</table>

Most frequent adverse events, %

<table>
<thead>
<tr>
<th></th>
<th>Any grade</th>
<th>Grade 3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematologic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>32</td>
<td>37</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>Non-hematologic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>Infections</td>
<td>34</td>
<td>9</td>
</tr>
<tr>
<td>ICANS</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ALT increase</td>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>

Tecvayli in Combination With Darzalex and Revlimid

Phase 1b study (MajesTEC-2) in RRMM with 1–3 prior lines of therapy (including an IMiD and a PI)

32 patients—who had received at least 2 prior lines of therapy—received treatment with the triplet and Tecvayli at 2 different doses (0.72 mg/kg and 1.5 mg/kg) subcutaneously

Most frequent non-hematologic adverse events, %

<table>
<thead>
<tr>
<th></th>
<th>Any grade</th>
<th>Grade 3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRS</td>
<td>25.8</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>46.9</td>
<td>6.3</td>
</tr>
<tr>
<td>Infections (≥1)</td>
<td>90.6</td>
<td>37.5</td>
</tr>
<tr>
<td>COVID-19</td>
<td>37.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Upper respiratory</td>
<td>31.3</td>
<td>0</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>25</td>
<td>15.6</td>
</tr>
<tr>
<td>COVID pneumonia</td>
<td>12.5</td>
<td>3.1</td>
</tr>
<tr>
<td>Sepsis</td>
<td>9.4</td>
<td>9.4</td>
</tr>
<tr>
<td>Pneumonia pseudomonal</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>CMV</td>
<td>6.3</td>
<td>6.3</td>
</tr>
</tbody>
</table>

IMiD, immunomodulatory drug; PI, proteasome inhibitor
Talquetamab in Patients With Relapsed/Refractory Multiple Myeloma

Phase 1/2 study (MonumenTAL-1) in RRMM

288 patients—with no prior T cell-redirecting therapies—received treatment with talquetamab at 2 different doses (0.4 mg/kg every week and 0.8 mg/kg every other week) subcutaneously.

Data from this trial was recently used to submit a Biologics License Application to the US Food and Drug Administration for the treatment of patients with relapsed or refractory multiple myeloma.

IMID, immunomodulatory drug; PI, proteasome inhibitor

Forimtamig (RG6234) in Patients With Relapsed/Refractory Multiple Myeloma

Phase 1 study in RRMM

105 patients received treatment with RG6234 in 2 different formulations (intravenous and subcutaneous).

Expected Toxicities With T-Cell Activating Therapies (CAR T and Bispecific Antibodies)

- **Cytokine release syndrome (CRS)**
 - Usually occurs within first 1–2 weeks
 - Frequency (all grade and grade 3–5) higher with CAR T

- **Infections**
 - Viruses: CMV, EBV
 - PCP/PJP
 - Ongoing discussions regarding prophylactic measures
 - IVIG
 - Anti-infectives

- **Cytopenias**
 - Dysgeusia

- **Neurotoxicity (ICANS)**
 - Usually occurs within first 1–2 weeks
 - Frequency (all grade and grade 3–5) higher with CAR T

- **Off-target effects (with GPRC5D-targeted agents)**
 - Cytokine release syndrome (CRS)
 - Neurotoxicity (ICANS)
 - Cytopenias
 - Infections

ICANS, immune effector cell-associated neurotoxicity syndrome; CMV, cytomegalovirus; EBV, Epstein-Barr virus; PCP/PJP, pneumocystis pneumonia/pneumocystis jiroveci pneumonia

Pretreatment With Tocilizumab Reduces Incidence and Severity of CRS

- **Cevostamab** is an FcRH5-targeted bispecific antibody under investigation in patients with RRMM

- An ongoing phase 1 study evaluating the use of tocilizumab (an IL-6 antibody) prior to the first dose of cevostamab. A single 8 mg/kg dose of tocilizumab was administered to 28 patients 2 hours prior to cevostamab

- 35.7% of patients receiving tocilizumab experienced CRS compared to 90.9% of patients who didn’t receive tocilizumab.

- Grade 3 CRS was observed in only one patient in each group and no G4/5.

- The frequency of neutropenia was higher for patients receiving tocilizumab compared with those who didn’t (64.3% vs 38.6% G3/4).

- No impact on response was observed with tocilizumab pretreatment.

Fixed-Duration Therapy With Bispecifics Cevostamab

At the time of this presentation, no patients who achieved an sCR have relapsed!

Mezigdomide: A Cereblon E3 Ligase Modulator (CELMoD)

CELMoDs are related to the immunomodulatory drugs (IMiDs) but are more potent and may overcome resistance to IMiDs

A phase 1/2 study of mezigdomide combined with dex in relapsed/refractory patients

101 patients who had received at least 6 prior lines of therapy (all were triple-class refractory; one third were previously exposed to anti-BCMA therapy) received treatment with mezigdomide-dex

Questions & Answers
Myeloma Mentors® allows patients and caregivers the opportunity to connect with trained mentors. This is a phone-based program offering an opportunity for a patient and/or caregiver to connect one-on-one with a trained patient and/or caregiver mentor to share his or her patient journeys and experiences.

No matter what your disease state—smoldering, newly diagnosed, or relapsed/refractory—our mentors have insights and information that can be beneficial to both patients and their caregivers.

Contact the Patient Navigation Center at 888-841-6673 to be connected to a Myeloma Mentor or to learn more.
MMRF Events

Our events are returning live and in-person, and there are so many ways to get involved. Most have a virtual option, too. Join us today!

Endurance Events

5K Walk/Run Events

Independent Events

FIND AN EVENT AND JOIN US: themmrf.org/get-involved/mmrf-events/

Upcoming Patient Education Events

Save the Date

<table>
<thead>
<tr>
<th>Topic</th>
<th>Date and Time (ET)</th>
<th>Speakers</th>
</tr>
</thead>
</table>
| Patient Summit | Saturday, March 11 9:00 AM to 1:40 PM ET | David Vesole, MD, PhD
Noa Biran, MD
Kimberley Doucette, MD
Ann McNeill, RN, MSN, APN
Susan Kumka, APN |
| Patient Summit | Saturday, March 11 9:00 AM to 1:40 PM ET | David Vesole, MD, PhD
Noa Biran, MD
Kimberley Doucette, MD
Ann McNeill, RN, MSN, APN
Susan Kumka, APN |
| Facebook Live FAQs | Tuesday, March 14 3:00 to 4:00 PM ET | Gurbakhash Kaur, MD
Sonia Patel, MPH, MSN, AGACNP-BC, APRN, AOCNP |
| Webinar: BCMA-Targeted Bispecific Antibodies in Multiple Myeloma | Tuesday, March 21 4:00 to 5:00 PM ET | Jesus Berdeja, MD
Amrita Krishnan, MD |
| Patient Summit | Saturday, March 25 9:00 AM to 3:45 PM MT | Leif Bergsagel, MD
Clarence Adoo, MD
Jonathan Keats, PhD
Sumit Madan, MD
Suzanne Hyde, MSW, LCSW
Barbara Kavanagh, MSW, LCSW
Joan Kuerber-Walker
William Brown |
| Webinar (rebroadcast): Multiple Myeloma Precursor Conditions | Wednesday, April 5 2:30 to 3:30 PM ET | Sagar Lonial, MD
Omar Nadeem, MD |

For more information or to register, visit themmrf.org/resources/education-program
Thank you!