Treatment Options for Patients With Multiple Myeloma Who Have Relapsed After Three or More Lines of Therapy, With an Update on Bispecific Antibodies

December 2, 2022

Tech Support

1-719-234-7952
Treatment Options for Patients With Multiple Myeloma Who Have Relapsed After Three or More Lines of Therapy, With an Update on Bispecific Antibodies
Webinar December 2, 2022

Resources

- Resource tab includes
 - Speaker biographies
 - Copy of the slide presentation
 - Exhibit Hall

Submit your questions throughout the program!
MMRF Research Initiatives

For more information, please visit themmrf.org

Speakers

Monique A. Hartley-Brown, MD, MMSc
Dana-Farber Cancer Institute
Boston, Massachusetts

Urvi A. Shah, MD
Memorial Sloan Kettering Cancer Center
New York, New York
Relapsed or Refractory Multiple Myeloma
Approach to Treatment for Triple-Class Refractory Patients

Monique A. Hartley-Brown, MD, MMSc
Attending Physician, Jerome Lipper Multiple Myeloma Center
Department of Medical Oncology
Dana-Farber Cancer Institute
Boston, Massachusetts

Definitions: What is relapsed/refractory disease and a line of therapy?

- **Relapsed**: recurrence (reappearance of disease) after a response to therapy
- **Refractory**: progression despite ongoing therapy
- **Progression**: change in M protein/light chain values
- **Line of therapy**: change in treatment due to either progression of disease or unmanageable side effects
 - **Note**: initial (or induction) therapy + stem cell transplant + consolidation/maintenance therapy = 1 line of therapy
Choosing Therapy for Relapsed/Refractory Myeloma

- **What do we know about the patient’s myeloma?**
 - What prior therapy has been used?
 - How well did it work?
 - Did the myeloma progress on active therapy?
 - High-risk cytogenetics/FISH/GEP?

- **What do we know about the patient?**
 - Age
 - Other medical problems
 - Diabetes
 - Blood clots
 - Lasting side effects from past therapies
 - Peripheral neuropathy
 - Personal preferences and values

Factors to Consider in Treatment Selection

- **Disease-related**
 - DOR to initial therapy
 - FISH/cytogenetics/genomics profile

- **Prior treatment-related**
 - Prior drug exposure
 - Toxicity of regimen
 - Mode of administration
 - Previous SCT

- **Patient-related**
 - Pre-existing toxicity
 - Presence of other conditions
 - Age
 - General health
 - Personal lifestyle and preferences

DOR, duration of response; FISH, fluorescence in situ hybridization; SCT, stem cell transplant

Options for Relapsed/Refractory Disease Continue to Increase

<table>
<thead>
<tr>
<th>IMiDs</th>
<th>Proteasome inhibitors</th>
<th>Chemotherapy anthracyclines</th>
<th>Chemotherapy alkylators</th>
<th>Steroids</th>
<th>Novel mechanisms of action</th>
<th>mAbs</th>
<th>Cellular therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thalomid (thalidomide)</td>
<td>Velcade (bortezomib)</td>
<td>Adriamycin</td>
<td>Cytoxan (cyclophosphamide)</td>
<td>Dexamethasone</td>
<td>XPOVIO (selinexor)</td>
<td>Empliciti (elotuzumab)</td>
<td>Abecma (idecabtagene viceleucel)</td>
</tr>
<tr>
<td>Revlimid (lenalidomide)</td>
<td>Kyprolis (carfilzomib)</td>
<td>Doxil (liposomal doxorubicin)</td>
<td>Bendamustine</td>
<td>Prednisone</td>
<td>Venclexta (venetoclax)*</td>
<td>Darzalex (daratumumab)</td>
<td>Carvykti (cilta-cabtagene autoleucel)</td>
</tr>
<tr>
<td>Pomalyst (pomalidomide)</td>
<td>Ninlaro (ixazomib)</td>
<td>Melphalan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Not yet FDA-approved for patients with multiple myeloma; †Withdrawn from the US market in 2021; ‡Antibody-drug conjugate

New formulations, new dosing, and new combinations, too!

Treatment Approach

First relapse

- Proteasome inhibitor (PI)/immunomodulatory drug (IMiD)/antibody-based therapy

>1 Relapse

- Any options for first relapse not tried
- Refractory to Velcade and Revlimid
 - DKd, Isa-Kd, DPd, Eio-Pd, Isa-Pd, or KPd
- Refractory to an IMiD, but sensitive to a PI
 - DVd, Svd, Ven-Vd (for t[11;14])* or
- Approved therapies
 - Sd, belbamaf, ide-cel, cilta-cel
- Bispecific antibodies, CAR T cells, CELMoDs
- Clinical trials

D, daratumumab (Darzalex); K, carfilzomib (Kyprolis); d, dexamethasone; Isa, isatuximab (Sarclisa); P, pomalidomide (Pomalyst); Eio, elotuzumab (Empliciti); V, bortezomib (Velcade); S, selinexor (Xpovio); Ven, venetoclax (Venclexta); belbamaf, belantamab mafodotin (Blenrep); ide-cel, idecabtagene viceleucel (Abecma); cilta-cel, cilta-cabtagene autoleucel (Carvykti)

*Not yet approved for use in myeloma patients
Triple-Class Refractory

- For patients with relapsed or refractory multiple myeloma who have received treatment with—and did not respond satisfactorily to, or progressed while on treatment with—the three main classes of drugs currently used to treat myeloma are...

<table>
<thead>
<tr>
<th>Proteasome inhibitors</th>
<th>Immunomodulatory drugs</th>
<th>Anti-CD38 monoclonal antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Velcade (bortezomib)</td>
<td>• Revlimid (lenalidomide)</td>
<td>• Darzalex (daratumumab)</td>
</tr>
<tr>
<td>• Kyprolis (carfilzomib)</td>
<td>• Pomalyst (pomalidomide)</td>
<td>• Sarclisa (isatuximab)</td>
</tr>
<tr>
<td>• Ninlaro (ixazomib)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Currently Available Drugs for Triple-Class Refractory Myeloma

<table>
<thead>
<tr>
<th>Class</th>
<th>Drug</th>
<th>Formulation</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear export inhibitor</td>
<td>XPOVIO (selinexor)</td>
<td>Twice-weekly pill</td>
<td>For relapsed/refractory myeloma in combination with dexamethasone (after at least 4 prior therapies and whose disease is refractory to at least 2 PIs, at least 2 IMiDs, and an anti-CD38 mAb</td>
</tr>
<tr>
<td>Antibody-drug conjugate</td>
<td>Blenrep (belantamab mafodotin)*</td>
<td>2.5 mg/kg IV over approximately 30 minutes once every 3 weeks</td>
<td>For relapsed/refractory myeloma (after at least 4 prior therapies including an anti-CD38 mAb, a PI, and an IMiD</td>
</tr>
<tr>
<td>Chimeric antigen receptor (CAR) T cell</td>
<td>Abecma (idecabtagene vicleucel)†</td>
<td>300 to 460 × 10⁶ genetically modified autologous CAR T cells in one or more infusion bags</td>
<td>For relapsed/refractory myeloma (after 4 or more prior lines of therapy, including an IMiD, a PI, and an anti-CD38 mAb</td>
</tr>
<tr>
<td>CAR T cell</td>
<td>Carvykti (ciltaclabtagene autoleucel)‡</td>
<td>0.5 to 1.0 × 10⁶ genetically modified autologous CAR T cells/kg of body weight</td>
<td>For relapsed/refractory myeloma (after 4 or more prior lines of therapy, including a PI, an IMiD, and an anti-CD38 mAb</td>
</tr>
</tbody>
</table>

IMiD, immunomodulatory agent; PI, proteasome inhibitor; mAb, monoclonal antibody
*Black box warning: changes in the corneal epithelium resulting in changes in vision; Blenrep is available only through a restricted distribution program
†Black box warning: cytokine release syndrome; neurologic toxicities; hemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS); prolonged cytopenia
‡Black box warning: cytokine release syndrome; neurologic toxicities; Parkinsonism and Guillain-Barré syndrome; hemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS); prolonged cytopenia
Abecma and Carvykti are available only through a restricted distribution program
XPOVIO + Dexamethasone in Relapsed/Refractory Myeloma

<table>
<thead>
<tr>
<th>No. Patients with ≥PR (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32 (26)</td>
</tr>
</tbody>
</table>

Previous therapies to which the disease was refractory, n (%)

<table>
<thead>
<tr>
<th>Previous therapies to which the disease was refractory</th>
<th>No. Patients with ≥PR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velcade, Kyprolis, Revlimid, Pomalyst, and Darzalex</td>
<td>21 (25)</td>
</tr>
<tr>
<td>Kyprolis, Revlimid, Pomalyst, and Darzalex</td>
<td>26 (26)</td>
</tr>
<tr>
<td>Velcade, Kyprolis, Pomalyst, and Darzalex</td>
<td>25 (27)</td>
</tr>
<tr>
<td>Kyprolis, Pomalyst, and Darzalex</td>
<td>31 (26)</td>
</tr>
</tbody>
</table>

Additional analyses showed clinical benefit with XPOVIO regardless of patient age and renal function.2,3

Supportive Care Strategies for XPOVIO

- Gastrointestinal: Consult with your doctor if nausea, vomiting, or diarrhea occur or persist. Begin prophylactic anti-nausea medications.
- Low sodium (hyponatremia): Maintain fluid intake.
- Fatigue: Stay hydrated and active.

Chari A et al. Manuscript under preparation.
Belantamab Mafodotin: Antibody-Drug Conjugate (ADC)

ADCs can selectively target and deliver drugs to myeloma cells.

Active cytotoxic drug is released inside the cell

NK-cell killing via ADCC

ADCC, antibody-dependent cellular cytotoxicity; BCMA, B-cell maturation antigen

First ADC Approved in MM

<table>
<thead>
<tr>
<th>DREAMM-2 Study</th>
<th>Blenrep (2.5 mg/kg)</th>
<th>Blenrep (3.4 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>97</td>
<td>99</td>
</tr>
<tr>
<td>Median no. lines of therapy, n (range)</td>
<td>7 (3–21)</td>
<td>6 (3–21)</td>
</tr>
<tr>
<td>Overall response rate (%)</td>
<td>31</td>
<td>34</td>
</tr>
<tr>
<td>Median progression-free survival (mos)</td>
<td>2.9</td>
<td>4.9</td>
</tr>
<tr>
<td>Median overall survival (mos)</td>
<td>Not reached</td>
<td>Not reached</td>
</tr>
</tbody>
</table>

Currently Available ADC

Side Effects

Blenrep
- Thrombocytopenia
- Keratopathy
- Decrease visual acuity
- Nausea
- Blurred vision
- Fever
- Infusion-related reactions
- Fatigue

Management
- Available only through a Risk Evaluation and Mitigation Strategies (REMS) due to the risk of ocular toxicity
- Patients receive ophthalmic examinations at baseline (within 3 weeks prior to the first dose), prior to each dose, and promptly for worsening symptoms
- Patients are advised to use preservative-free lubricant eye drops at least 4 times a day starting with the first infusion and continuing until end of treatment
- Patients should also avoid use of contact lenses unless directed by an ophthalmologist

Two Drugs Withdrawn From US Market

What happened?

Both drugs were granted accelerated approval by the FDA which requires further clinical studies to verify a drug’s clinical benefit.

Farydak (panobinostat)
- The required clinical studies were not completed within the FDA-specified timeframe

Withdrawn November 2021

Pepaxto (melflufen)
- The phase 3 OCEAN study compared Pepaxto-dex with Pomalyst-dex in patients with relapsed/refractory myeloma
 - Overall survival with Pepaxto-dex was not improved versus Pomalyst-dex which didn’t pass the regulatory hurdles to confirm the accelerated approval in the US

Withdrawn October 2021
Relapsed or Refractory Multiple Myeloma
Additional Treatment Options
Now and On the Horizon

Urvi A. Shah, MD
Assistant Attending, Myeloma Service
Memorial Sloan Kettering Cancer Center
New York, New York
@UrviShahMD

CAR T-Cell Therapy

Examples:
• Ciltacabtagene autoleucel (cilta-cel)
• Idecabtagene vicleucel (ide-cel)
• CT103A

Shah UA et al. BMJ. 2020;370:m3176.
Two CAR T-Cell Therapies FDA-Approved!

Abecma
- ORR 73%
- Average PFS 9 months
- Patients (%)
 - PR
 - VGPR
 - CR or sCR and MRD NE
 - CR or sCR and MRD-

Carvykti
- ORR 96.9%
- Average PFS 21 months
- Patients (%)
 - PR
 - VGPR
 - CR or sCR

CAR T-Cell Therapy Patient Journey

1. Apheresis 1 day
 Immune cells from the patient are collected

2. (Manufacturing) Patients return home 4–6 weeks
 Standard of care therapy is permitted until CAR T cells are ready for infusion

3. Lymphodepletion (chemotherapy) 3 days
 Fludara and Cytoxan are used to create “immunologic space” to CAR T cells to expand

4. Infusion 2 weeks

5. Follow up Within 2 weeks
T Cell–Engaging Agents: Expected Toxicities

- Cytokine release syndrome (CRS)
- Neurotoxicity (ICANS)
- Cytopenias
- Infections

Transplant vs CAR T Cells

<table>
<thead>
<tr>
<th>Cellular therapies</th>
<th>CAR T-cell therapy</th>
<th>Autologous stem cell transplantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient’s cells collected</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Types of cells collected</td>
<td>T cells*</td>
<td>Stem cells†</td>
</tr>
<tr>
<td>Collected cells are genetically engineered in a lab</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Patient given chemotherapy before cells are infused back into patient</td>
<td>Yes, lymphodepleting therapy</td>
<td>Yes, melphalan</td>
</tr>
<tr>
<td>When in the course of myeloma is this usually done?</td>
<td>After multiple relapses</td>
<td>As part of initial treatment</td>
</tr>
<tr>
<td>Side effects of treatment</td>
<td>Cytokine release syndrome; confusion</td>
<td>Fatigue, nausea, diarrhea</td>
</tr>
</tbody>
</table>

*An immune cell that is the “business end” of the system, in charge of maintaining order and removing cells.
†Precursor cells that give rise to many types of blood cells. We actually collect CD34+ve cells.
Options on the Horizon

<table>
<thead>
<tr>
<th>Clinical phase</th>
<th>Novel agents</th>
<th>Immunotherapies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Novel mechanisms of action†</td>
<td>Immuno-modulatory agents</td>
</tr>
<tr>
<td>Phase 3</td>
<td>Venetoclax*</td>
<td>Iberdomide</td>
</tr>
<tr>
<td>Phase 1, 2</td>
<td>Abemaciclib* Cobimetinib Dabrafenib Enasidenib Erdafitinib Idasanutin Trametinib Vemurafenib</td>
<td>Avadomide Meziqitomide TAK-573</td>
</tr>
</tbody>
</table>

*Being studied in the MyDRUG trial; †More agents can be found at www.clinicaltrials.gov

Venetoclax and t(11;14)

Venetoclax is a Bcl-2 inhibitor

- BCL2 inhibitor
- Induces cancer cell death
- t(11;14) multiple myeloma → ↑BCL2 and ↓MCL1
- t(11;14): first predictive marker in multiple myeloma, indicating susceptibility to BCL2 inhibition

Venetoclax and t(11;14)

Venetoclax and t(11;14)

Treatment Options for Patients With Multiple Myeloma Who Have Relapsed After Three or More Lines of Therapy, With an Update on Bispecific Antibodies

Webinar December 2, 2022

Venetoclax monotherapy has an acceptable safety profile.

Venetoclax and t(11;14)

Venetoclax bortezomib dex vs placebo bortezomib dex; 1–3 prior lines

Median follow up 18.7 m mPFS

22.4 m venetoclax

11.5 m placebo

Venetoclax especially active in t(11;14) or BCL2\text{high} MM

Bispecific Antibodies

Examples:
- Elranatamab
- Teclistamab
- TNB-303B (ABBV-383)
- REGN5458
- Cevostamab
- Talquetamab

Bispecific Antibodies on the Horizon

<table>
<thead>
<tr>
<th>Study</th>
<th>MagnetisMM-1 (Phase 1)</th>
<th>MajesTEC-1 (Phase 1/2)</th>
<th>Phase 1</th>
<th>Phase 1</th>
<th>Phase 1</th>
<th>MonumentAL-1 (Phase 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent</td>
<td>Elranatamab¹</td>
<td>Teclistamab²</td>
<td>TNB-383B (ABBV-383)²</td>
<td>REGN5458⁴</td>
<td>Cevostamab⁵</td>
<td>Talquetamab⁶</td>
</tr>
<tr>
<td>Targets</td>
<td>BCMA × CD3</td>
<td>BCMA × CD3</td>
<td>BCMA × CD3</td>
<td>BCMA × CD3</td>
<td>FcRH5 × CD3</td>
<td>GPRC5D × CD3</td>
</tr>
<tr>
<td>No. patients</td>
<td>55</td>
<td>165</td>
<td>118</td>
<td>73</td>
<td>161</td>
<td>55 at 2 RP2D</td>
</tr>
<tr>
<td>Median no. prior therapies</td>
<td>6 (2–15)</td>
<td>5 (2–14)</td>
<td>5 (1–15)</td>
<td>5 (2–17)</td>
<td>6 (2–18)</td>
<td>6 (2–17)</td>
</tr>
</tbody>
</table>

Efficacy

- Overall response rate (%): 69, 62, 81 (240 mg), 75 (200–800 mg), 56.7 (132–198 mg), 69
- Complete response or better (%): 30, 29, 39, 16, 8, 16
- Median duration of response (mos): Not reported, Not reached, Not reported, Not reached, 11.5, Not reached
- Median progression-free survival (mos): Not reported, 59% at 9 mos, Not reported, Not reported, Not reported, Not reported

Safety

- CRS, all grades (G3/4), %: 87 (0), 72 (1), 54 (3), 38 (0), 80 (1.2), 75 (5)
- Neurotoxicity, all grades (G3/4), %: Not reported, 13 (0), Not reported, 4 (0), 14 (1), Not reported

RP2D, recommended phase 2 dose

Treatment Options for Patients With Multiple Myeloma Who Have Relapsed After Three or More Lines of Therapy, With an Update on Bispecific Antibodies
Webinar December 2, 2022

Iberdomide: A Cereblon E3 Ligase Modulator (CELMoD)

CELMoDs are related to the immunomodulatory drugs (IMiDs) but are more potent and may overcome resistance to IMiDs

A phase 1/2 study of iberdomide combined with dex in relapsed/refractory patients

107 patients—who had received at least 6 prior lines of therapy and 97% were triple-class refractory—received treatment with iberdomide-dex.

Iberdomide in combination with dexamethasone in patients with relapsed/refractory multiple myeloma

ORR 26.2% ORR 25%

Iber + dex (n=107)

Iber + dex Post Anti-BCMA Therapy (n=24)

PR 7.5 4.2
VGPR 17.8 4.2
CR 0.9 0.0
sCR 16.7

11 new drugs approved and available (Kyprolis, Pomalyst, Darzalex, Ninlaro, Empliciti, Sarclisa, Xgeva, Xpovio, Blenrep, Abecma, Carvykti) in last 10 years.

With the introduction of each new drug, potential for additional combinations.

Many promising new drugs/new combinations in clinical development—consider a clinical trial.
Recent Updates

Options for Relapsed/Refractory Disease Continue to Increase

<table>
<thead>
<tr>
<th>IMiDs</th>
<th>Proteasome inhibitors</th>
<th>Chemotherapy anthracyclines</th>
<th>Chemotherapy alkylators</th>
<th>Steroids</th>
<th>Novel mechanisms of action</th>
<th>Monoclonal antibodies</th>
<th>Cellular therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thalomid (thalidomide)</td>
<td>Velcade (bortezomib)</td>
<td>Adriamycin</td>
<td>Cytoxan (cyclophosphamide)</td>
<td>Dexamethasone</td>
<td>XPOVIO (selinexor)</td>
<td>Empliciti (elotuzumab)</td>
<td>Abecma (idecabtagene vicleucel)</td>
</tr>
<tr>
<td>Revlimid (lenalidomide)</td>
<td>Kyprolis (carfilzomib)</td>
<td>Doxil (liposomal doxorubicin)</td>
<td>Bendamustine</td>
<td>Prednisone</td>
<td>Venclexta (venetoclax)*</td>
<td>Darzalex (daratumumab)</td>
<td>Carvykti (ciltaclabtagene autoleucel)</td>
</tr>
<tr>
<td>Pomalyst (pomalidomide)</td>
<td>Ninlaro (ixazomib)</td>
<td>Melphalan</td>
<td></td>
<td>Eproxlak (Panobinostat)*</td>
<td>Sarclisa (isatuximab)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New formulations, new dosing, and new combinations, too!

*Not yet FDA-approved for patients with multiple myeloma; †Withdrawn from the US market in 2021; ‡Antibody-drug conjugate; †‡Withdrawn from US market in 2022

†Bispecific antibody
Treatment Options for Patients With Multiple Myeloma Who Have Relapsed After Three or More Lines of Therapy, With an Update on Bispecific Antibodies
Webinar December 2, 2022

Blenrep Withdrawn From US Market

What happened?

Blenrep was granted accelerated approval in 2020 by the FDA, which requires further clinical studies to verify a drug’s clinical benefit.

Results from the confirmatory phase 3 DREAMM-3 study that compared Blenrep with Pomalyst-dex in patients with relapsed/refractory myeloma after at least two prior lines of therapy showed that progression-free survival with Blenrep was not improved versus Pomalyst-dex → Withdrawn November 2022*

Patients already enrolled in the Blenrep Risk Evaluation and Mitigation Strategy program will have the option to enroll in a compassionate use program to continue to access treatment. Patients currently being treated with Blenrep should consult their health care provider.

The DREAMM clinical study program is continuing as a path forward for approval with two ongoing phase 3 studies (DREAMM-7 and DREAMM-8) testing Blenrep in combinations in an earlier treatment setting for patients who have tried at least one prior line of therapy. Results are anticipated in the first half of 2023.

*Marketing of Blenrep continues in other countries where it has been approved.

FDA Has Now Approved the First Bispecific Antibody in Myeloma: Tecvayli!

<table>
<thead>
<tr>
<th>Drug</th>
<th>Formulation</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tecvayli (teclistamab)*</td>
<td>Step-up dosing† the first week then once weekly thereafter by subcutaneous injection</td>
<td>• For relapsed/refractory myeloma (after 4 or more prior lines of therapy, including an IMiD, a PI, and an anti-CD38 mAb)</td>
</tr>
</tbody>
</table>

IMiD, immunomodulatory agent; PI, proteasome inhibitor; mAb, monoclonal antibody

*Black box warning: cytokine release syndrome; neurologic toxicities

†Patients are hospitalized for 48 hours after administration of all step-up doses.

Tecvayli is available only through a restricted distribution program.

Median duration of response 18.4 months

Treatment Approach

First relapse

| Proteasome inhibitor (PI)/immunomodulatory drug (IMiD)/antibody-based therapy |

>1 Relapse

<table>
<thead>
<tr>
<th>Any options for first relapse not tried</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractory to Velcade and Revlimid</td>
</tr>
<tr>
<td>Refractory to an IMiD, but sensitive to a PI</td>
</tr>
<tr>
<td>DKd, Isa-Kd, DPd, Elo-Pd, Isa-Pd, or KPd</td>
</tr>
<tr>
<td>DVD, Svd, Ven-Vd (for t[11;14])*</td>
</tr>
</tbody>
</table>

Triple-class refractory

| Approved therapies |
| Clinical trials |
| Sd, Abecma, Carvkti, Tecvayli |
| Bispecific/trispecific antibodies, CAR T cells, CELMoDs |

D, Darzalex; K, Kyprolis; d, dexamethasone; Isa, Sarcilisa (isatuximab); P, Pomalyst; Elo, Empliciti (elotuzumab); V, Velcade; S, Xpovio (selinexor); Ven, Vencllexta

*Not yet approved for use in myeloma patients.

Tecvayli Side Effects

Side Effects
- Cytokine release syndrome
- Injection-related reactions
- Injection-site reaction
- Infections
- Neutropenia
- Anemia
- Thrombocytopenia
- Neurotoxicity

Side Effect Management
- Available only through a Risk Evaluation and Mitigation Strategies (REMS) due to the risk of cytokine release syndrome
- Patients will receive step-up dosing and will be monitored in an inpatient setting
- Cytokine release syndrome is managed in the same fashion as CAR T
- Injection reactions are managed with oral antihistamines and topical steroids
- Infection prevention!
- COVID precautions
Similarities and Differences Between CAR T-Cell Therapy and Bispecific Antibodies

<table>
<thead>
<tr>
<th></th>
<th>CAR T-cell therapy</th>
<th>Bispecific antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved product</td>
<td>Abecma, Carvykti</td>
<td>Tecvayli</td>
</tr>
<tr>
<td>Efficacy</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>How given</td>
<td>One-and-done</td>
<td>IV or SC, weekly to every 3 weeks until progression</td>
</tr>
<tr>
<td>Where given</td>
<td>Academic medical centers</td>
<td>Academic medical centers</td>
</tr>
<tr>
<td>Notable adverse events</td>
<td>CRS and neurotoxicity</td>
<td>CRS and neurotoxicity</td>
</tr>
<tr>
<td>Cytokine release syndrome</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Neurotoxicity</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Availability</td>
<td>Wait time for manufacturing</td>
<td>Off-the-shelf, close monitoring for CRS and neurotoxicity</td>
</tr>
</tbody>
</table>

Questions & Answers
Myeloma Mentors® allows patients and caregivers the opportunity to connect with trained mentors. This is a phone-based program offering an opportunity for a patient and/or caregiver to connect one-on-one with a trained patient and/or caregiver mentor to share his or her patient journeys and experiences.

No matter what your disease state—smoldering, newly diagnosed, or relapsed/refractory—our mentors have insights and information that can be beneficial to both patients and their caregivers.

Contact the Patient Navigation Center at 888-841-6673 to be connected to a Myeloma Mentor or to learn more.
Upcoming Patient Education Events

Save the Date

<table>
<thead>
<tr>
<th>Topic</th>
<th>Date and Time</th>
<th>Speakers</th>
</tr>
</thead>
</table>
| Patient Summit (live and online) | Friday, December 9 12:00 PM – 4:30 PM (CT) New Orleans, Louisiana | Laura Finn, MD—Host
Ambuga R. Badari, MD
Amrita Y. Krishnan, MD
Paul G. Richardson, MD
A. Keith Stewart, MBChB |
| Facebook Live Session | Thursday, December 15 4:00 PM – 5:00 PM (ET) | Nitya Nathwani, MD |
| Expert Session: Multiple Myeloma Highlights From the 2022 American Society of Hematology Meeting | Tuesday, December 20 1:00 PM – 3:00 PM (ET) | Hearn Jay Cho, MD, PhD
Joshua Richter, MD |

For more information or to register, please visit themmrf.org/resources/education-program
Thank you!